Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2014, Volume 26, Number 3, Pages 31–48 (Mi mm3457)  

This article is cited in 4 scientific papers (total in 4 papers)

Piecewise polynomial approximation of the sixth order with automatic knots detection

N. D. Dikusar

Joint Institute for Nuclear Research, Laboratory of Information Technologies, Dubna, Moscow Reg.
Full-text PDF (654 kB) Citations (4)
References:
Abstract: Coefficients of a local segment model for piecewise polynomial approximation of the sixth order are evaluated using values of the function and of its first derivative at three knots of the support. Formulae for coefficients of the function expansion in degrees of xx0 on a three-point grid are obtained within the framework of the recently proposed basic element method. An algorithm for automatic knot detection is developed. Numerical calculations applying quite complicated tests have shown high efficiency of the model with respect to the calculation stability, accuracy and smoothness of approximation.
Keywords: piecewise polynomial approximation, least squares method, basic elements method, interpolation, optimal knot selection, smoothing, efficiency of algorithms.
Received: 04.09.2012
English version:
Mathematical Models and Computer Simulations, 2014, Volume 6, Issue 5, Pages 509–522
DOI: https://doi.org/10.1134/S2070048214050020
Bibliographic databases:
Document Type: Article
UDC: 519.65; 519.245
Language: Russian
Citation: N. D. Dikusar, “Piecewise polynomial approximation of the sixth order with automatic knots detection”, Mat. Model., 26:3 (2014), 31–48; Math. Models Comput. Simul., 6:5 (2014), 509–522
Citation in format AMSBIB
\Bibitem{Dik14}
\by N.~D.~Dikusar
\paper Piecewise polynomial approximation of the sixth order with automatic knots detection
\jour Mat. Model.
\yr 2014
\vol 26
\issue 3
\pages 31--48
\mathnet{http://mi.mathnet.ru/mm3457}
\elib{https://elibrary.ru/item.asp?id=21826438}
\transl
\jour Math. Models Comput. Simul.
\yr 2014
\vol 6
\issue 5
\pages 509--522
\crossref{https://doi.org/10.1134/S2070048214050020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925962617}
Linking options:
  • https://www.mathnet.ru/eng/mm3457
  • https://www.mathnet.ru/eng/mm/v26/i3/p31
  • This publication is cited in the following 4 articles:
    1. N. D. Dikusar, “Numerical solution of the Cauchy problem based on the basic element method”, Math. Models Comput. Simul., 15:6 (2023), 1024–1036  mathnet  crossref  crossref  mathscinet
    2. N. V. Korepanova, N. D. Dikusar, Y. N. Pepelyshev, M. Dima, “Neutron noise analysis using the basic element method”, Ann. Nucl. Energy, 131 (2019), 475–482  crossref  isi
    3. Dikusar N., Mathematical Modeling and Computational Physics 2017 (Mmcp 2017), Epj Web of Conferences, 173, ed. Adam G. Busa J. Hnatic M. Podgainy D., E D P Sciences, 2018  crossref  isi
    4. N. D. Dikusar, “Polynomial approximation of the high orders”, Math. Models Comput. Simul., 8:2 (2016), 183–200  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:674
    Full-text PDF :185
    References:84
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025