Loading [MathJax]/jax/output/CommonHTML/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2013, Volume 25, Number 3, Pages 89–104 (Mi mm3344)  

This article is cited in 16 scientific papers (total in 16 papers)

Simulation of wave responses from subvertical macrofracture systems using grid-characteristic method

M. V. Muratov, I. B. Petrov

Moscow Institute of Physics and Technologies (State University)
References:
Abstract: The aim of this paper is formation and propagation of scattered waves analysis. These waves form the response of fracture patterns on seismograms. The initial pulse is a plane wavefront spreading into the medium. The periodic structure of scattered wave response from system (claster) of subvertical macrofractures is studying in this paper. Basing on numeric simulation the ways of this fracture patterns geometric characteristics estimation are concluded. The grid-characteristic method with triangular computational mesh is used in the paper. Boundary conditions on surfaces of fractures and on integration domain boundaries take into account the characteristic properties of the determining hyperbolic equations system. This numeric method lets make the numeric algorithms on the integration domain boundaries and the boundaries between different media the most correctly, take into account the physics of the problem. For this reason this method is the most appropriate for numeric solution of dynamic problems with pronounced wave character in heterogeneous media, in particular for analyzing problem of seismic waves interaction with fracture patterns.
Keywords: numerical simulation, seismic exploration, fracture patterns, hyperbolic equation systems, grid-characteristic method, non-structured triangular meshes.
Received: 23.04.2012
English version:
Mathematical Models and Computer Simulations, 2013, Volume 5, Issue 5, Pages 479–491
DOI: https://doi.org/10.1134/S2070048213050098
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. V. Muratov, I. B. Petrov, “Simulation of wave responses from subvertical macrofracture systems using grid-characteristic method”, Mat. Model., 25:3 (2013), 89–104; Math. Models Comput. Simul., 5:5 (2013), 479–491
Citation in format AMSBIB
\Bibitem{MurPet13}
\by M.~V.~Muratov, I.~B.~Petrov
\paper Simulation of wave responses from subvertical macrofracture systems using grid-characteristic method
\jour Mat. Model.
\yr 2013
\vol 25
\issue 3
\pages 89--104
\mathnet{http://mi.mathnet.ru/mm3344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112321}
\transl
\jour Math. Models Comput. Simul.
\yr 2013
\vol 5
\issue 5
\pages 479--491
\crossref{https://doi.org/10.1134/S2070048213050098}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925969111}
Linking options:
  • https://www.mathnet.ru/eng/mm3344
  • https://www.mathnet.ru/eng/mm/v25/i3/p89
  • This publication is cited in the following 16 articles:
    1. I. A. Mitskovets, N. I. Khokhlov, “Simulation of propagation of dynamic perturbations in porous media by the grid-characteristic method with explicit description of heterogeneities”, Comput. Math. Math. Phys., 63:10 (2023), 1904–1917  mathnet  mathnet  crossref  crossref
    2. I. A. Mitkovets, N. I. Khokhlov, “Grid-characteristic method using superimposed grids in the problem of seismic exploration of fractured geological media”, CMIT, 7:3 (2023), 28  crossref
    3. I. B. Petrov, M. V. Muratov, “The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article)”, Math. Models Comput. Simul., 11:6 (2019), 924–939  mathnet  crossref  crossref  elib
    4. Petrov I.B. Muratov V M., “Mathematical Modeling of Spatial Wave Responses By Grid-Characteristic Method on Irregular Computational Meshes”, Lobachevskii J. Math., 40:4, SI (2019), 499–506  crossref  mathscinet  isi
    5. A. V. Favorskaya, M. S. Zhdanov, N. I. Khokhlov, I. B. Petrov, “Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method”, Geophys. Prospect., 66:8 (2018), 1485–1502  crossref  isi  scopus
    6. A. Favorskaya, I. Petrov, V. Golubev, N. Khokhlov, “Numerical simulation of earthquakes impact on facilities by grid characteristic method”, Knowledge-Based and Intelligent Information & Engineering Systems, Procedia Computer Science, 112, eds. C. Zanni-Merk, C. Frydman, C. Toro, Y. Hicks, R. Howlett, L. Jain, Elsevier Science BV, 2017, 1206–1215  crossref  isi  scopus
    7. A. Favorskaya, I. Petrov, A. Grinevskiy, “Numerical simulation of fracturing in geological medium”, Knowledge-Based and Intelligent Information & Engineering Systems, Procedia Computer Science, 112, eds. C. Zanni-Merk, C. Frydman, C. Toro, Y. Hicks, R. Howlett, L. Jain, Elsevier Science BV, 2017, 1216–1224  crossref  isi  scopus
    8. A. V. Favorskaya, V. I. Golubev, “About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems”, Computer Research and Modeling, 9:5 (2017), 761–771  mathnet  mathnet  crossref
    9. Voroshchuk D.N. Miryaha V.A. Petrov I.B. Sannikov A.V., “Discontinuous Galerkin Method For Wave Propagation in Elastic Media With Inhomogeneous Inclusions”, Russ. J. Numer. Anal. Math. Model, 31:1 (2016), 41–50  crossref  mathscinet  zmath  isi  elib  scopus
    10. M. V. Muratov, I. B. Petrov, I. E. Kvasov, “Chislennoe reshenie zadach seismorazvedki v zonakh treschinovatykh rezervuarov”, Matem. modelirovanie, 28:7 (2016), 31–44  mathnet  elib
    11. A. I. Sukhinov, A. E. Chistyakov, A. A. Semenyakina, A. V. Nikitina, “Chislennoe modelirovanie ekologicheskogo sostoyaniya Azovskogo morya s primeneniem skhem povyshennogo poryadka tochnosti na mnogoprotsessornoi vychislitelnoi sisteme”, Kompyuternye issledovaniya i modelirovanie, 8:1 (2016), 151–168  mathnet  crossref
    12. Petrov I., International Conference on Computer Simulation in Physics and Beyond 2015, Journal of Physics Conference Series, 681, IOP Publishing Ltd, 2016  crossref  isi
    13. Alena Favorskaya, Igor Petrov, Nikolay Khokhlov, “Numerical Modeling of Wave Processes During Shelf Seismic Exploration”, Procedia Computer Science, 96 (2016), 920  crossref
    14. V. A. Miryaha, A. V. Sannikov, I. B. Petrov, “Discontinuous Galerkin method for numerical simulation of dynamic processes in solids”, Math. Models Comput. Simul., 7:5 (2015), 446–455  mathnet  crossref  elib
    15. A. I. Sukhinov, D. S. Khachunts, A. E. Chistyakov, “A mathematical model of pollutant propagation in near-ground atmospheric layer of a coastal region and its software implementation”, Comput. Math. Math. Phys., 55:7 (2015), 1216–1231  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    16. I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, V. A. Miryaha, A. V. Sannikov, V. I. Golubev, “The monitoring state of a moving train using high performance systems and modern computational methods”, Math. Models Comput. Simul., 7:1 (2015), 51–61  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:516
    Full-text PDF :132
    References:97
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025