Abstract:
In present article Cabaret-method was generalized in case of two-dimensional incompressible fluid in terms of «stream function – vorticity». The example test «one-eddy» problem shows the high quality of the received scheme from the standpoint of the question of dispersion and diffusion properties. In the problem of decaying homogeneous isotropic turbulence slope of the energy spectra for all grids (16$\times$16, 32$\times$32, 64$\times$64, 128$\times$128) are «$-3$» up to the highest harmonics, which coincides with the theory of Batchelor.
Citation:
V. Yu. Glotov, V. M. Goloviznin, “Сabaret scheme for the two-dimensional incompressible fluid in terms of «stream function – vorticity»”, Mat. Model., 23:9 (2011), 89–104; Math. Models Comput. Simul., 4:2 (2012), 144–154
This publication is cited in the following 9 articles:
Kulikov Yu.M., Son E.E., “Double Shear Layer Evolution on the Non-Uniform Computational Mesh”, Phys. Scr., 96:12 (2021), 125262
Kulikov Yu.M., Son E.E., “Taylor-Green Vortex Simulation Using Cabaret Scheme in a Weakly Compressible Formulation”, Eur. Phys. J. E, 41:3 (2018), 41
Sergey I. Markov, Natalya B. Itkina, 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2018, 177
Y. M. Kulikov, E. E. Son, “Thermoviscous fluid flow modes in a plane nonisothermal layer”, Thermophys. Aeromech., 25:6 (2018), 845
Yu. M. Kulikov, E. E. Son, “Primenenie skhemy «KABARE» k zadache ob evolyutsii svobodnogo sdvigovogo techeniya”, Kompyuternye issledovaniya i modelirovanie, 9:6 (2017), 881–903
Kulikov Yu.M., Son E.E., “The Cabaret Method For a Weakly Compressible Fluid Flows in One- and Two-Dimensional Implementations”, Xxxi International Conference on Equations of State For Matter (Elbrus 2016), Journal of Physics Conference Series, 774, IOP Publishing Ltd, 2016, UNSP 012094
D. G. Asfandiyarov, V. M. Goloviznin, S. A. Finogenov, “Parameter-free method for computing the turbulent flow in a plane channel in a wide range of Reynolds numbers”, Comput. Math. Math. Phys., 55:9 (2015), 1515–1526
V. Yu. Glotov, V. M. Goloviznin, “CABARET scheme in velocity-pressure formulation for two-dimensional incompressible fluids”, Comput. Math. Math. Phys., 53:6 (2013), 721–735
A. V. Danilin, V. M. Goloviznin, “Cabaret scheme in “velocity–vorticity” formulation for numerical modeling of ideal fluid motion in two-dimensional domain”, Math. Models Comput. Simul., 4:6 (2012), 574–586