Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2011, Volume 23, Number 3, Pages 139–160 (Mi mm3093)  

This article is cited in 3 scientific papers (total in 3 papers)

About one new two-stages Rosenbrock scheme for differential-algebraic systems

A. B. Alshin, E. A. Alshina

Moscow Institute of Electronic Technology (Technical University), Zelenograd
Full-text PDF (313 kB) Citations (3)
References:
Abstract: The equations for coefficients of two-stages Rosenbrock scheme guarantying approximation with third order of accuracy for differential-algebraic system (index 1) are obtained in this paper. These coefficients are complex numbers. New 2-stages Rosenbrock scheme is constructed. It is L2-stable. This scheme has accuracy O(τ3) for differential-algebraic systems and O(τ4) for pure differential stiff systems. Convergence of this scheme is proved. This scheme was tested on several standard stiff tests and compared with previously know scheme of the same class.
Keywords: stiff-system, differential-algebraic systems, Rosenbrock schemes, schemes with complex parameters, A-stability, L-stability.
Received: 23.03.2010
English version:
Mathematical Models and Computer Simulations, 2011, Volume 3, Issue 5, Pages 604–618
DOI: https://doi.org/10.1134/S2070048211050024
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. B. Alshin, E. A. Alshina, “About one new two-stages Rosenbrock scheme for differential-algebraic systems”, Mat. Model., 23:3 (2011), 139–160; Math. Models Comput. Simul., 3:5 (2011), 604–618
Citation in format AMSBIB
\Bibitem{AlsAls11}
\by A.~B.~Alshin, E.~A.~Alshina
\paper About one new two-stages Rosenbrock scheme for differential-algebraic systems
\jour Mat. Model.
\yr 2011
\vol 23
\issue 3
\pages 139--160
\mathnet{http://mi.mathnet.ru/mm3093}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2849303}
\transl
\jour Math. Models Comput. Simul.
\yr 2011
\vol 3
\issue 5
\pages 604--618
\crossref{https://doi.org/10.1134/S2070048211050024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928993116}
Linking options:
  • https://www.mathnet.ru/eng/mm3093
  • https://www.mathnet.ru/eng/mm/v23/i3/p139
  • This publication is cited in the following 3 articles:
    1. Liudmila Kalichkina, Dmitry Novikov, Oleg Kotelnikov, Viktor Malkov, Alexey Knyazev, “Reaction Pathway and Kinetic Study of 4,5-Dihydroxyimidazolidine-2-thione Synthesis by HPLC and NMR”, HETEROCYCLES, 104:11 (2022), 1954  crossref
    2. Bulatov M., Solovarova L., “Collocation-Variation Difference Schemes With Several Collocation Points For Differential-Algebraic Equations”, Appl. Numer. Math., 149:SI (2020), 153–163  crossref  mathscinet  isi
    3. Bulatov M.V., Solovarova L.S., “Collocation-Variation Difference Schemes For Differential-Algebraic Equations”, Math. Meth. Appl. Sci., 41:18, SI (2018), 9048–9056  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:573
    Full-text PDF :173
    References:84
    First page:19
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025