Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1997, Volume 9, Number 12, Pages 43–56 (Mi mm1486)  

This article is cited in 10 scientific papers (total in 10 papers)

Mathematical models and computer experiment

Population models with non-linear diffusion

N. V. Belotelova, A. I. Lobanovb

a The Centre on the Problems of Ecology and Productivity of Forests
b Moscow Institute of Physics and Technology
Abstract: Population reaction-diffusion models with nonlinear diffusion are considered. Two classes of the models are investigated – the models of one population and the models of competing populations. In the first class several types of kinetics are considered. The dynamics of the population outbreak is studied for different kinetics. Outbreak spreading front has finite supporter in every time for each case. This phenomenon principally differs from Kolmogorov's waves. In the second class of the models the possibility of appearing stationary spatially nonhomogeneuos solutions is analyzed. Amplification of the Gause principle for spatially distributed competing systems is formulated.
Received: 29.04.1997
Bibliographic databases:
Language: Russian
Citation: N. V. Belotelov, A. I. Lobanov, “Population models with non-linear diffusion”, Mat. Model., 9:12 (1997), 43–56
Citation in format AMSBIB
\Bibitem{BelLob97}
\by N.~V.~Belotelov, A.~I.~Lobanov
\paper Population models with non-linear diffusion
\jour Mat. Model.
\yr 1997
\vol 9
\issue 12
\pages 43--56
\mathnet{http://mi.mathnet.ru/mm1486}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1609633}
\zmath{https://zbmath.org/?q=an:0993.92501}
Linking options:
  • https://www.mathnet.ru/eng/mm1486
  • https://www.mathnet.ru/eng/mm/v9/i12/p43
  • This publication is cited in the following 10 articles:
    1. M. A. Davydova, G. D. Rublev, “Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation data”, Theoret. and Math. Phys., 220:2 (2024), 1262–1281  mathnet  crossref  crossref  mathscinet  adsnasa
    2. D. Kha, V. G. Tsibulin, “Uravneniya diffuzii-reaktsii-advektsii dlya sistemy «khischnik-zhertva» v geterogennoi srede”, Kompyuternye issledovaniya i modelirovanie, 13:6 (2021), 1161–1176  mathnet  crossref
    3. A. V. Epifanov, V. G. Tsibulin, “O dinamike kosimmetrichnykh sistem khischnikov i zhertv”, Kompyuternye issledovaniya i modelirovanie, 9:5 (2017), 799–813  mathnet  crossref
    4. L. E. Alpeeva, V. G. Tsibulin, “Kosimmetrichnyi podkhod k analizu formirovaniya prostranstvennykh populyatsionnykh struktur s uchetom taksisa”, Kompyuternye issledovaniya i modelirovanie, 8:4 (2016), 661–671  mathnet  crossref
    5. Usenko V.A., Lobanov A.I., “Metod potokovoi relaksatsii dlya resheniya kvazilineinykh uravnenii parabolicheskogo tipa”, Kompyuternye issledovaniya i modelirovanie, 3:1 (2011), 47–53  elib
    6. Budyanskii A.V., Tsibulin V.G., “Modelirovanie prostranstvenno-vremennoi migratsii blizkorodstvennykh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 3:4 (2011), 477–488  elib
    7. V. A. Usenko, A. I. Lobanov, “Metod potokovoi relaksatsii dlya resheniya kvazilineinykh uravnenii parabolicheskogo tipa”, Kompyuternye issledovaniya i modelirovanie, 3:1 (2011), 47–53  mathnet  crossref
    8. A. V. Budyanskii, V. G. Tsibulin, “Modelirovanie prostranstvenno-vremennoi migratsii blizkorodstvennykh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 3:4 (2011), 477–488  mathnet  crossref
    9. A. V. Shmidt, “Analysis of reaction-diffusion systems by the method of linear determining equations”, Comput. Math. Math. Phys., 47:2 (2007), 249–261  mathnet  crossref  mathscinet  zmath  elib  elib
    10. K. A. Volosov, “A Property of the Ansatz of Hirota's Method for Quasilinear Parabolic Equations”, Math. Notes, 71:3 (2002), 339–354  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:1255
    Full-text PDF :934
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025