Loading [MathJax]/jax/output/CommonHTML/config.js
Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2021, Volume 31, Issue 4, Pages 423–432
DOI: https://doi.org/10.1016/j.mencom.2021.07.001
(Mi mendc949)
 

This article is cited in 36 scientific papers (total in 36 papers)

Focus Article

Current progress in membranes for fuel cells and reverse electrodialysis

A. B. Yaroslavtsev, I. A. Stenina

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
Abstract: The deterioration of the environmental situation has led to the need to restructure the world’s power industry, and clean renewable power sources are coming to the forefront. This review deals with recent advances in the development of promising ion-exchange membrane materials for two types of application that have been intensely developing recently, namely, hydrogen energy and reverse electrodialysis. Special attention is paid to the comparison of two properties of membranes, conductivity and selectivity, that are competing but fundamentally important in both areas. Perfluorinated sulfonic acid membranes now play a dominant role in hydrogen power engineering, as they provide not only high proton conductivity but also chemical stability and low gas permeability. The review also covers other types of membrane materials, including anion exchange membranes, polybenzimidazoles and hybrid membranes containing inorganic nanoparticles that have been actively developed in recent years. The milder operating conditions of membranes in reverse electrodialysis units allow one to use less expensive non-perfluorinated membranes, including grafted ones. It is of note that in devices of this type, the selectivity of membranes to the transfer of oppositely charged ions is a more important parameter.
Keywords: membranes, hydrogen energy, fuel cells, reverse electrodialysis, proton conductivity, selectivity.
Document Type: Article
Language: English


Citation: A. B. Yaroslavtsev, I. A. Stenina, “Current progress in membranes for fuel cells and reverse electrodialysis”, Mendeleev Commun., 31:4 (2021), 423–432
Linking options:
  • https://www.mathnet.ru/eng/mendc949
  • https://www.mathnet.ru/eng/mendc/v31/i4/p423
  • This publication is cited in the following 36 articles:
    1. I. I. Ponomarev, Yu. A. Volkova, K. M. Skupov, E. S. Vtyurina, I. I. Ponomarev, Mendeleev Commun., 35:1 (2025), 119–121  mathnet  crossref
    2. Pavel Loktionov, Dmitry Konev, Roman Pichugov, Anatoly Antipov, “Electrochemical heat engine based on neutralization flow battery for continuous low-grade heat harvesting”, Energy Conversion and Management, 299 (2024), 117830  crossref
    3. Elisabete I. Santiago, José J. Linares, Polymer Electrolyte-Based Electrochemical Devices, 2024, 91  crossref
    4. A. A. Belmesov, L. V. Shmygleva, A. A. Baranov, A. V. Levchenko, “Proton exchange membrane fuel cells: processes – materials – design in current trends”, Russian Chem. Reviews, 93:6 (2024), RCR5121  mathnet  mathnet  crossref  isi  scopus
    5. Natalia Loza, Irina Falina, Natalia Kutenko, Svetlana Shkirskaya, Julia Loza, Natalia Kononenko, “Bilayer Heterogeneous Cation Exchange Membrane with Polyaniline Modified Homogeneous Layer: Preparation and Electrotransport Properties”, Membranes, 13:10 (2023), 829  crossref
    6. Yuanchuan Ren, Ping Ning, Guangfei Qu, Nanqi Ren, Fenghui Wu, Yuyi Yang, Xiuping Chen, Zuoliang Wang, Yan Hu, “Nano Biomass Material functionalized by β-CD@Ce(NO)3 as a high performance adsorbent to removal of fluorine from wastewater”, Chemosphere, 311 (2023), 136859  crossref
    7. Pavel Loktionov, Roman Pichugov, Dmitry Konev, “Neutralization flow batteries in energy harvesting and storage”, Journal of Energy Storage, 72 (2023), 108467  crossref
    8. Jinyuan Li, Congrong Yang, Xiaoming Zhang, Zhangxun Xia, Suli Wang, Shansheng Yu, Gongquan Sun, “Alkyl-substituted poly(arylene piperidinium) membranes enhancing the performance of high-temperature polymer electrolyte membrane fuel cells”, J. Mater. Chem. A, 11:34 (2023), 18409  crossref
    9. Yu. A. Zakharova, V. G. Sergeyev, “Modification of Nafion Membranes by Polycation in the Presence of Lower Alyphatic Alcohols and Salt”, Membr. Membr. Technol., 5:3 (2023), 168  crossref
    10. Vitaly Volkov, Nikita Slesarenko, Alexander Chernyak, Irina Avilova, Victor Tarasov, “Hydration and Mobility of Alkaline Metal Cations in Sulfonic Cation Exchange Membranes”, Membranes, 13:5 (2023), 518  crossref
    11. Vasily T. Lebedev, Yuri V. Kulvelis, Alexandr V. Shvidchenko, Oleg N. Primachenko, Alexei S. Odinokov, Elena A. Marinenko, Alexander I. Kuklin, Oleksandr I. Ivankov, “Electrochemical Properties and Structure of Membranes from Perfluorinated Copolymers Modified with Nanodiamonds”, Membranes, 13:11 (2023), 850  crossref
    12. Enver Güler, Ayd{\i}n Cihanoğlu, Esra Alt{\i}ok, Tuğçe Zeynep Kaya, Mine Eti, Nalan Kabay, Green Membrane Technologies towards Environmental Sustainability, 2023, 341  crossref
    13. Randa I. Gaber, Tu Phuong Pham Le, Emad Alhseinat, Ricardo P. Nogueira, Dinesh Shetty, Shadi W. Hasan, Fawzi Banat, “Energy recovery from produced water via reverse Electrodialysis: The role of heavy metals and soluble organics on process performance”, Energy Conversion and Management, 293 (2023), 117433  crossref
    14. Ju. A. Zakharova, V. G. Sergeyev, “Modification of Nafion Membrane by Polycation in the Presemce of Lower Alyphatic Alcohols and Salt”, Membrany i membrannye tehnologii, 13:3 (2023), 194  crossref
    15. Irina Stenina, Anastasia Pyrkova, Andrey Yaroslavtsev, “NASICON-Type Li1+xAlxZryTi2-x-y(PO4)3 Solid Electrolytes: Effect of Al, Zr Co-Doping and Synthesis Method”, Batteries, 9:1 (2023), 59  crossref
    16. Pavel Loktionov, Dmitry Konev, Anatoly Antipov, “Hydrogen-assisted neutralization flow battery with high power and energy densities”, Journal of Power Sources, 564 (2023), 232818  crossref
    17. Kostadin V. Petrov, Mark Mao, Albert Santoso, Ilya I. Ryzhkov, David A. Vermaas, “Design criteria for selective nanofluidic ion-exchange membranes”, Journal of Membrane Science, 688 (2023), 122156  crossref
    18. Stepan Bilyk, Vladimir Tverskoy, Alexander Chernyak, Irina Avilova, Nikita Slesarenko, Vitaly Volkov, “Water Molecules' and Lithium Cations' Mobility in Sulfonated Polystyrene Studied by Nuclear Magnetic Resonance”, Membranes, 13:8 (2023), 725  crossref
    19. V. I. Vasil'eva, A. M. Saud, E. M. Akberova, “Direct evidence for the electroconvective mechanism of neutral amino acid transport during electrodialysis”, Mendeleev Commun., 33:2 (2023), 275–278  mathnet  crossref
    20. A. D. Manin, D. V. Golubenko, P. A. Yurova, A. B. Yaroslavtsev, “Improvement of Li/Mg monovalent ion selectivity of cation-exchange membranes by incorporation of cerium or zirconium phosphate particles”, Mendeleev Commun., 33:3 (2023), 365–367  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
    Statistics & downloads:
    Abstract page:23
    Full-text PDF :5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025