Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2015, Volume 25, Issue 3, Pages 214–215
DOI: https://doi.org/10.1016/j.mencom.2015.05.019
(Mi mendc2355)
 

This article is cited in 5 scientific papers (total in 5 papers)

Communications

Combining 3D-QSAR and molecular docking for the virtual screening of PARP inhibitors

E. I. Prokhorova, A. V. Bekkera, A. V. Perevoznikova, M. Kumskova, I. Svitankobcd

a Department of Mechanics and Mathematics, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
b N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
c Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
d Higher Chemical College of the Russian Academy of Sciences, D.I. Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
Full-text PDF (333 kB) Citations (5)
Abstract: 3D-QSAR and molecular docking were applied to predict the inhibitory activity of 196 compounds towards poly(ADP-riboso) polymerase-1 (PARP). A proportion of experimentally active ligands was higher among compounds with good rankings from both methods (57%) compared to compounds scored as inactive by at least one method (40% for docking-active, QSAR-inactive compounds).
Document Type: Article
Language: English


Citation: E. I. Prokhorov, A. V. Bekker, A. V. Perevoznikov, M. Kumskov, I. Svitanko, “Combining 3D-QSAR and molecular docking for the virtual screening of PARP inhibitors”, Mendeleev Commun., 25:3 (2015), 214–215
Linking options:
  • https://www.mathnet.ru/eng/mendc2355
  • https://www.mathnet.ru/eng/mendc/v25/i3/p214
  • This publication is cited in the following 5 articles:
    1. M. P. Egorov, V. P. Ananikov, E. G. Baskir, S. E. Boganov, V. I. Bogdan, A. N. Vereshchagin, V. A. Vil', I. L. Dalinger, A. D. Dilman, O. L. Eliseev, S. G. Zlotin, E. A. Knyazeva, V. M. Kogan, L. O. Kononov, M. M. Krayushkin, V. B. Krylov, L. M. Kustov, V. V. Levin, B. V. Lichitsky, M. G. Medvedev, N. E. Nifantiev, O. A. Rakitin, A. M. Sakharov, I. V. Svitanko, G. A. Smirnov, A. Yu. Stakheev, M. A. Syroeshkin, A. O. Terent'ev, Yu. V. Tomilov, E. V. Tretyakov, I. V. Trushkov, L. L. Fershtat, V. A. Chaliy, V. Z. Shirinian, “Current trends in organic chemistry: contribution of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences”, Russ Chem Bull, 73:9 (2024), 2423  crossref
    2. I. V. Svitanko, T. S. Pivina, “Molecular modeling in synthesis: from statistical methods to quantum chemistry and practical applications”, Russ Chem Bull, 73:5 (2024), 1093  crossref
    3. I. Yu. Titov, V. S. Stroylov, P. V. Rusina, I. Svitanko, “Preliminary modelling as the first stage of targeted organic synthesis”, Russian Chem. Reviews, 90:7 (2021), 831–867  mathnet  mathnet  crossref  isi  scopus
    4. Nafiseh Vahedi, Majid Mohammadhosseini, Mehdi Nekoei, “QSAR Study of PARP Inhibitors by GA-MLR, GA-SVM and GA-ANN Approaches”, CAC, 16:8 (2020), 1088  crossref
    5. V. S. Stroylov, D. V. Katkov, I. Yu. Titov, O. V. Stroganov, F. N. Novikov, G. G. Chilov, I. Svitanko, “Modeling comparative selectivity profiles of kinase inhibitors using FEP/MD protocol”, Mendeleev Commun., 27:4 (2017), 349–351  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
    Statistics & downloads:
    Abstract page:21
    Full-text PDF :7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025