Abstract:
In the article we present a procedure of human cardiovascular model parameters personalization and its validation against database comprising data of 1546 patients. The algorithm of parameters identification on the basis of experimental data is designed with different parameter combinations. The quality of prediction of the systolic and diastolic pressures is used as the validation criterion. It is shown that with an appropriate personalization the model can provide adequate predictions (correlation near 0.9), where the decisive role is played by the total peripheral resistance parameter. Meanwhile parameters of the largest arteries do not play a significant role in the prediction. At the same time the model with presented personalization technique is not able to provide adequate prediction of pulse pressure.
Key words:
human cardiovascular system, arterial pressure regulation, mathematical modeling, model validation, parameter personalization, experimental data.
Received 07.10.2015, Published 04.12.2015
Document Type:
Article
UDC:
51-76
Language: Russian
Citation:
I. N. Kiselev, E. A. Biberdorf, V. I. Baranov, T. G. Komlyagina, V. N. Melnikov, I. Yu. Suvorova, S. G. Krivoshchekov, F. A. Kolpakov, “Personalization of parameters and validation of model of the human cardiovascular system”, Mat. Biolog. Bioinform., 10:2 (2015), 526–547
\Bibitem{KisBibBar15}
\by I.~N.~Kiselev, E.~A.~Biberdorf, V.~I.~Baranov, T.~G.~Komlyagina, V.~N.~Melnikov, I.~Yu.~Suvorova, S.~G.~Krivoshchekov, F.~A.~Kolpakov
\paper Personalization of parameters and validation of model of the human cardiovascular system
\jour Mat. Biolog. Bioinform.
\yr 2015
\vol 10
\issue 2
\pages 526--547
\mathnet{http://mi.mathnet.ru/mbb242}
\crossref{https://doi.org/10.17537/2015.10.526}
Linking options:
https://www.mathnet.ru/eng/mbb242
https://www.mathnet.ru/eng/mbb/v10/i2/p526
This publication is cited in the following 4 articles:
D. S. Babaev, E. O. Kutumova, F. A. Kolpakov, “Modelirovanie differentsialnogo vliyaniya allelei gena CYP2C9 na metabolizm lozartana”, Matem. biologiya i bioinform., 19:2 (2024), 533–564
Dilafruz Nurjabova, Qulmatova Sayyora, Pardayeva Gulmira, Lecture Notes in Computer Science, 13772, Internet of Things, Smart Spaces, and Next Generation Networks and Systems, 2023, 57
A. A. Yakovlev, A. I. Abakumov, A. V. Kostyushko, E. V. Markelova, “Tsitokiny kak indikatory sostoyaniya organizma pri infektsionnykh zabolevaniyakh. Analiz eksperimentalnykh dannykh”, Kompyuternye issledovaniya i modelirovanie, 12:6 (2020), 1409–1426
I. N. Kiselev, E. O. Kutumova, A. F. Kolpakova, G. I. Lifshits, F. A. Kolpakov, “Matematicheskoe modelirovanie deistviya antigipertenzivnykh preparatov”, Matem. biologiya i bioinform., 14:1 (2019), 233–256