Loading [MathJax]/jax/output/SVG/config.js
Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2016, Volume 23, Number 3, Pages 248–258
DOI: https://doi.org/10.18255/1818-1015-2016-3-248-258
(Mi mais495)
 

This article is cited in 4 scientific papers (total in 4 papers)

Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation

V. F. Butuzova, N. N. Nefedova, L. Reckeb, K. Schneiderc

a Lomonosov Moscow State University, 119991, Moscow, Leninskie Gory, MSU, faculty of physics
b HU Berlin, Institut für Mathematik, Rudower Chaussee, Berlin, Germany
c Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
Full-text PDF (519 kB) Citations (4)
References:
Abstract: For a singularly perturbed parabolic problem with Dirichlet conditions we prove the existence of a solution periodic in time and with boundary layers at both ends of the space interval in the case that the degenerate equation has a double root. We construct the corresponding asymptotic expansion in a small parameter. It turns out that the algorithm of the construction of the boundary layer functions and the behavior of the solution in the boundary layers essentially differ from that ones in case of a simple root. We also investigate the stability of this solution and the corresponding region of attraction.
Keywords: singularly perturbed reaction-diffusion equation; asymptotic approximation; periodic solution; boundary layers; Lyapunov stability; region of attraction.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-04619_а
14-01-91333_ННИО_а
This work was supported by RFBR and RFBR–DFG projects (pr. 15-01-04619, 14-01-91333).
Received: 15.05.2016
English version:
Automatic Control and Computer Sciences, 2017, Volume 51, Issue 7, Pages 606–613
DOI: https://doi.org/10.3103%2FS0146411617070045
Bibliographic databases:
Document Type: Article
UDC: 519.624.2
Language: Russian
Citation: V. F. Butuzov, N. N. Nefedov, L. Recke, K. Schneider, “Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation”, Model. Anal. Inform. Sist., 23:3 (2016), 248–258; Automatic Control and Computer Sciences, 51:7 (2017), 606–613
Citation in format AMSBIB
\Bibitem{ButNefRec16}
\by V.~F.~Butuzov, N.~N.~Nefedov, L.~Recke, K.~Schneider
\paper Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 3
\pages 248--258
\mathnet{http://mi.mathnet.ru/mais495}
\crossref{https://doi.org/10.18255/1818-1015-2016-3-248-258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3520847}
\elib{https://elibrary.ru/item.asp?id=26246291}
\transl
\jour Automatic Control and Computer Sciences
\yr 2017
\vol 51
\issue 7
\pages 606--613
\crossref{https://doi.org/10.3103%2FS0146411617070045}
Linking options:
  • https://www.mathnet.ru/eng/mais495
  • https://www.mathnet.ru/eng/mais/v23/i3/p248
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :125
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025