Loading [MathJax]/jax/output/SVG/config.js
Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2013, Volume 20, Number 6, Pages 111–120 (Mi mais347)  

This article is cited in 12 scientific papers (total in 12 papers)

On the Bootstrap for Persistence Diagrams and Landscapes

F. Chazala, B. T. Fasyb, F. Leccic, A. Rinaldoc, A. Singhd, L. Wassermanc

a INRIA Saclay
b Computer Science Department, Tulane University, Stanley Thomas 303 New Orleans, LA 70118
c Department of Statistics, Carnegie Mellon University, Baker Hall 132 Pittsburgh, PA 15213
d Machine Learning Department, Carnegie Mellon University, Gates Hillman Centers, 8203 5000 Forbes Avenue Pittsburgh, PA 15213-3891
References:
Abstract: Persistent homology probes topological properties from point clouds and functions. By looking at multiple scales simultaneously, one can record the births and deaths of topological features as the scale varies. In this paper we use a statistical technique, the empirical bootstrap, to separate topological signal from topological noise. In particular, we derive confidence sets for persistence diagrams and confidence bands for persistence landscapes.
The article is published in the author's wording.
Keywords: persistent homology, bootstrap, topological data analysis.
Received: 01.11.2013
Document Type: Article
UDC: 512.664
Language: English
Citation: F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, A. Singh, L. Wasserman, “On the Bootstrap for Persistence Diagrams and Landscapes”, Model. Anal. Inform. Sist., 20:6 (2013), 111–120
Citation in format AMSBIB
\Bibitem{ChaFasLec13}
\by F.~Chazal, B.~T.~Fasy, F.~Lecci, A.~Rinaldo, A.~Singh, L.~Wasserman
\paper On the Bootstrap for Persistence Diagrams and Landscapes
\jour Model. Anal. Inform. Sist.
\yr 2013
\vol 20
\issue 6
\pages 111--120
\mathnet{http://mi.mathnet.ru/mais347}
Linking options:
  • https://www.mathnet.ru/eng/mais347
  • https://www.mathnet.ru/eng/mais/v20/i6/p111
  • This publication is cited in the following 12 articles:
    1. Rosenstock S., “Learning From the Shape of Data”, Philos. Sci., 88:5 (2021), 1033–1044  crossref  mathscinet  isi
    2. Vipond O., “Multiparameter Persistence Landscapes”, J. Mach. Learn. Res., 21 (2020)  mathscinet  zmath  isi
    3. Turner K., “Medians of Populations of Persistence Diagrams”, Homol. Homotopy Appl., 22:1 (2020), 255–282  crossref  mathscinet  zmath  isi  scopus
    4. Kusano G., “on the Expectation of a Persistence Diagram By the Persistence Weighted Kernel”, Jpn. J. Ind. Appl. Math., 36:3, SI (2019), 861–892  crossref  mathscinet  zmath  isi  scopus
    5. Biscio Ch.A.N., Moller J., “the Accumulated Persistence Function, a New Useful Functional Summary Statistic For Topological Data Analysis, With a View to Brain Artery Trees and Spatial Point Process Applications”, J. Comput. Graph. Stat., 28:3 (2019), 671–681  crossref  mathscinet  isi  scopus
    6. Patrangenaru V., Bubenik P., Paige R.L., Osborne D., “Challenges in Topological Object Data Analysis”, Sankhya Ser. A, 81:1, SI (2019), 244–271  crossref  mathscinet  zmath  isi
    7. Hofer Ch.D., Kwitt R., Niethammer M., “Learning Representations of Persistence Barcodes”, J. Mach. Learn. Res., 20 (2019), 126  mathscinet  zmath  isi
    8. Brecheteau C., “a Statistical Test of Isomorphism Between Metric-Measure Spaces Using the Distance-to-a-Measure Signature”, Electron. J. Stat., 13:1 (2019), 795–849  crossref  mathscinet  zmath  isi  scopus
    9. P. Bubenik, P. Dlotko, “A Persistence Landscapes Toolbox For Topological Statistics”, J. Symb. Comput., 78:SI (2017), 91–114  crossref  mathscinet  zmath  isi  scopus
    10. V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, G. Heo, “Using Persistent Homology and Dynamical Distances To Analyze Protein Binding”, Stat. Appl. Genet. Mol. Biol., 15:1 (2016), 19–38  crossref  mathscinet  isi  scopus
    11. Way M.J., Gazis P.R., Scargle J.D., “Structure in the 3D Galaxy Distribution. II. Voids and Watersheds of Local Maxima and Minima”, Astrophys. J., 799:1 (2015), 95  crossref  isi  scopus
    12. Chazal F., Fasy B.T., Lecci F., Rinaldo A., Wasserman L., “Stochastic Convergence of Persistence Landscapes and Silhouettes”, J. Comput. Geom., 6:2, SI (2015), 140–161  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:450
    Full-text PDF :164
    References:76
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025