Loading [MathJax]/jax/output/CommonHTML/jax.js
Zhurnal Tekhnicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zhurnal Tekhnicheskoi Fiziki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Tekhnicheskoi Fiziki, 2018, Volume 88, Issue 11, Pages 1734–1742
DOI: https://doi.org/10.21883/JTF.2018.11.46638.2586
(Mi jtf5780)
 

This article is cited in 7 scientific papers (total in 7 papers)

Physical electronics

Influence of annealing and argon pressure on the microcrystalline structure of magnetron-sputtered textured cobalt films

A. S. Dzhumalievab, Yu. V. Nikulinab, Yu. A. Filimonovabc

a Saratov Branch, Kotel'nikov Institute of Radio-Engineering and Electronics, Russian Academy of Sciences
b Saratov State University
c Yuri Gagarin State Technical University of Saratov
Abstract: The influence of argon pressure P (0.13 P 1 Pa) and vacuum annealing on the microstructure and texture of d 300 nm thick cobalt films magnetron-sputtered on a SiO2/Si substrate has been investigated. It has been shown that the films deposited at 0.26 P<1 Pa have a columnar microstructure with a mixed hcp-Co(002)/fcc-Co(111) phase. Annealing results in a more uniform microstructure owing to the grain size growth and improves the hcp-Co(002)/fcc-Co(111) texture. The films deposited at 0.13 P< 0.18 Pa have a mixed crystalline phase: the hcp-Co(002)/fcc-Co(111) and hcp-Co(101) phases coexist with an fcc crystalline phase and fcc-Co(200) texture. Finally, films grown at P 0.13 Pa are characterized by the fcc-Co(200) texture, and their microstructure is nonuniform over the thickness: at the film–substrate interface, there exists a dc 100–130 nm thick layer with a quasi-uniform microstructure, which becomes granulated at d>dc. Annealing results in a more uniform microstructure of these films due to grain growth, improves the fcc-Co(200) texture, and causes the appearance of the fcc-Co(111)/hcp-Co(002) phase.
Keywords: Cobalt Films, Argon Pressure, Microcrystalline Structure, Vacuum Annealing, Mixed Crystalline Phases.
Funding agency Grant number
Russian Foundation for Basic Research 16-37-60052
Received: 05.12.2017
English version:
Technical Physics, 2018, Volume 63, Issue 11, Pages 1678–1686
DOI: https://doi.org/10.1134/S1063784218110099
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Dzhumaliev, Yu. V. Nikulin, Yu. A. Filimonov, “Influence of annealing and argon pressure on the microcrystalline structure of magnetron-sputtered textured cobalt films”, Zhurnal Tekhnicheskoi Fiziki, 88:11 (2018), 1734–1742; Tech. Phys., 63:11 (2018), 1678–1686
Citation in format AMSBIB
\Bibitem{DzhNikFil18}
\by A.~S.~Dzhumaliev, Yu.~V.~Nikulin, Yu.~A.~Filimonov
\paper Influence of annealing and argon pressure on the microcrystalline structure of magnetron-sputtered textured cobalt films
\jour Zhurnal Tekhnicheskoi Fiziki
\yr 2018
\vol 88
\issue 11
\pages 1734--1742
\mathnet{http://mi.mathnet.ru/jtf5780}
\crossref{https://doi.org/10.21883/JTF.2018.11.46638.2586}
\elib{https://elibrary.ru/item.asp?id=36904550}
\transl
\jour Tech. Phys.
\yr 2018
\vol 63
\issue 11
\pages 1678--1686
\crossref{https://doi.org/10.1134/S1063784218110099}
Linking options:
  • https://www.mathnet.ru/eng/jtf5780
  • https://www.mathnet.ru/eng/jtf/v88/i11/p1734
  • This publication is cited in the following 7 articles:
    1. Seonjeong Cheon, Shuang Zhu, Yuanzuo Gao, Jing Li, Nia J. Harmon, Wanyu Zhang, Joseph S. Francisco, Chongqin Zhu, Hailiang Wang, “Neighboring Catalytic Sites Are Essential for Electrochemical Dechlorination of 2-Chlorophenol”, J. Am. Chem. Soc., 146:36 (2024), 25151  crossref
    2. Jau-Shiung Fang, Kun-Huang Chen, Yi-Lung Cheng, Giin-Shan Chen, “Layer-by-layer deposition of breakdown-strengthened Co(Ni) films by modulating termination time over the redox replacement”, Materials Chemistry and Physics, 296 (2023), 127222  crossref
    3. Aleksandr V. Kobyakov, Gennadiy S. Patrin, Vasiliy I. Yushkov, Yaroslav G. Shiyan, Roman Yu. Rudenko, Nikolay N. Kosyrev, Sergey M. Zharkov, “Magnetic and Resonance Properties of a Low-Dimensional Cobalt–Aluminum Oxide–Germanium Film Tunnel Junction Deposited by Magnetron Sputtering”, Magnetochemistry, 8:10 (2022), 130  crossref
    4. Greta Bener, Vitoldas Kopustinskas, Asta Guobienė, Andrius Vasiliauskas, Mindaugas Andrulevičius, Šarūnas Meškinis, “Cobalt-Activated Transfer-Free Synthesis of the Graphene on Si(100) by Anode Layer Ion Source”, Processes, 10:2 (2022), 272  crossref
    5. Jau-Shiung Fang, Yu-Lin Wu, Yi-Lung Cheng, Giin-Shan Chen, “Synthesis of Dilute Phosphorous-Embedded Co Alloy Films on a NiSi Substrate with a Superior Gap-Filling Capability for Nanoscale Interconnects”, J. Electrochem. Soc., 168:4 (2021), 042505  crossref
    6. I. I. Amirov, R. V. Selyukov, V. V. Naumov, E. S. Gorlachev, “Influence of Deposition Conditions and Ion-Plasma Treatment of Thin Cobalt Films on Their Electrical Resistivity”, Russ Microelectron, 50:1 (2021), 1  crossref
    7. Yasin Göktürk Y{\i}ld{\i}z, “Exchange bias effect revealed by irreversible structural transformation between the HCP and FCC structures of Cobalt nanoparticles”, Phase Transitions, 93:4 (2020), 429  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Zhurnal Tekhnicheskoi Fiziki Zhurnal Tekhnicheskoi Fiziki
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025