Processing math: 100%
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2021, Volume 14, Issue 5, Pages 659–666
DOI: https://doi.org/10.17516/1997-1397-2021-14-5-659-666
(Mi jsfu952)
 

This article is cited in 3 scientific papers (total in 3 papers)

On an inverse problem for a stationary equation with boundary condition of the third kind

Alexander V. Velisevich

Siberian Federal University, Krasnoyarsk, Russian Federation
Full-text PDF (108 kB) Citations (3)
References:
Abstract: The identification of an unknown coefficient in the lower term of elliptic second-order differential equation Mu+ku=f with boundary condition of the third kind is considered. The identification of the coefficient is based on integral boundary data. The local existence and uniqueness of the strong solution for the inverse problem is proved.
Keywords: inverse problem for PDE, boundary value problem, second-order elliptic equation, existence and uniqueness theorem.
Funding agency Grant number
Russian Foundation for Basic Research 20-31-90053
This work was supported by Russian Foundation of Basic Research [grant no. 20-31-90053].
Received: 10.04.2021
Received in revised form: 10.05.2021
Accepted: 20.06.2021
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: English
Citation: Alexander V. Velisevich, “On an inverse problem for a stationary equation with boundary condition of the third kind”, J. Sib. Fed. Univ. Math. Phys., 14:5 (2021), 659–666
Citation in format AMSBIB
\Bibitem{Vel21}
\by Alexander~V.~Velisevich
\paper On an inverse problem for a stationary equation with boundary condition of the third kind
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2021
\vol 14
\issue 5
\pages 659--666
\mathnet{http://mi.mathnet.ru/jsfu952}
\crossref{https://doi.org/10.17516/1997-1397-2021-14-5-659-666}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000716998700013}
Linking options:
  • https://www.mathnet.ru/eng/jsfu952
  • https://www.mathnet.ru/eng/jsfu/v14/i5/p659
  • This publication is cited in the following 3 articles:
    1. Alexander V. Velisevich, Anna Sh. Lyubanova, “On the stability of the solutions of inverse problems for elliptic equations”, Zhurn. SFU. Ser. Matem. i fiz., 17:3 (2024), 398–407  mathnet
    2. A. I. Kozhanov, G. V. Namsaraeva, “Solvability analysis of problems of determining external influence of combined type in processes described by parabolic equations”, J. Appl. Industr. Math., 18:2 (2024), 282–293  mathnet  crossref  crossref
    3. A. Sh. Lyubanova, A. V. Velisevich, “An Inverse Problem for a Quasilinear Elliptic Equation”, J Math Sci, 270:4 (2023), 591  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :49
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025