This work is supported by the Russian Science Foundation under Grant 14-21-00162.
Received: 26.03.2016 Revised: 19.04.2017
Bibliographic databases:
Document Type:
Article
Language: English
Linking options:
https://www.mathnet.ru/eng/jotp1
This publication is cited in the following 8 articles:
Patrice Abry, Gustavo Didier, Oliver Orejola, Herwig Wendt, “On the empirical spectral distribution of large wavelet random matrices based on mixed-Gaussian fractional measurements in moderately high dimensions”, Electron. J. Probab., 30:none (2025)
P. A. Yaskov, “Sufficient conditions for the Marchenko–Pastur theorem”, Theory Probab. Appl., 68:4 (2024), 657–673
Yifu Tang, Claudia Kirch, Jeong Eun Lee, Renate Meyer, “Posterior consistency for the spectral density of non‐Gaussian stationary time series”, Scandinavian J Statistics, 50:3 (2023), 1152
Pavel Yaskov, “Marchenko–Pastur law for a random tensor model”, Electron. Commun. Probab., 28 (2023), 23–17
P. A. Yaskov, “Limiting spectral distribution for large sample covariance matrices with graph-dependent elements”, Theory Probab. Appl., 67:3 (2022), 375–388
Pavel Yaskov, “Limit of the smallest eigenvalue of a sample covariance matrix for spherical and related distributions”, Springer Proc. Math. Statist., 371 (2021), 229–241
Jennifer Bryson, Roman Vershynin, Hongkai Zhao, “Marchenko–Pastur law with relaxed independence conditions”, Random Matrices: Theory Appl., 10:04 (2021)
P. A. Yaskov, “On a spectrum of sample covariation matrices for time series”, Theory Probab. Appl., 62:3 (2018), 432–443