Loading [MathJax]/jax/output/CommonHTML/config.js
Journal de Mathématiques Pures et Appliquées. Neuvième Série
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal de Mathématiques Pures et Appliquées. Neuvième Série, 2014, Volume 102, Issue 1, Pages 48–78
DOI: https://doi.org/10.1016/j.matpur.2013.11.001
(Mi jmpa1)
 

This article is cited in 11 scientific papers (total in 11 papers)

Isomonodromic differential equations and differential categories

S. Gorchinskiya, A. Ovchinnikovbc

a Steklov Mathematical Institute, Gubkina str. 8, Moscow, 119991, Russia
b CUNY Queens College, Department of Mathematics, 65-30 Kissena Blvd, Queens, NY 11367, USA
c CUNY Graduate Center, Department of Mathematics, 365 Fifth Avenue, New York, NY 10016, USA
Citations (11)
Abstract: We study isomonodromicity of systems of parameterized linear differential equations and related conjugacy properties of linear differential algebraic groups by means of differential categories. We prove that isomonodromicity is equivalent to isomonodromicity with respect to each parameter separately under a filtered-linearly closed assumption on the field of functions of parameters. Our result implies that one does not need to solve any non-linear differential equations to test isomonodromicity anymore. This result cannot be further strengthened by weakening the requirement on the parameters as we show by giving a counterexample. Also, we show that isomonodromicity is equivalent to conjugacy to constants of the associated parameterized differential Galois group, extending a result of P. Cassidy and M. Singer, which we also prove categorically. We illustrate our main results by a series of examples, using, in particular, a relation between the Gauss–Manin connection and parameterized differential Galois groups.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00145
12-01-31506
12-01-33024
13-01-12420
Ministry of Education and Science of the Russian Federation 11.G34.31.0023
Dynasty Foundation
National Science Foundation CCF-0952591
PSC-CUNY 60001-40 41
S. Gorchinskiy was supported by the grants RFBR 11-01-00145, 12-01-31506, 12-01-3302, 13-01-12420, AG Laboratory NRU HSE, RF government grant, ag.11.G34.31.0023, and by Dmitry Zimin’s Dynasty Foundation. A. Ovchinnikov was supported by the grants: NSF CCF-0952591 and PSC-CUNY No. 60001-40 41.
Received: 19.09.2012
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/jmpa1
  • This publication is cited in the following 11 articles:
    1. Michael Wibmer, “Finiteness Properties of Affine Difference Algebraic Groups”, International Mathematics Research Notices, 2022:1 (2022), 506  crossref
    2. Andrei Minchenko, Alexey Ovchinnikov, “Triviality of differential Galois cohomology of linear differential algebraic groups”, Communications in Algebra, 47:12 (2019), 5094  crossref
    3. Lucia Di Vizio, “Action of an endomorphism on (the solutions of) a linear differential equation”, Publications mathématiques de Besançon. Algèbre et théorie des nombres, 2019, no. 1, 21  crossref
    4. Andrei Minchenko, Alexey Ovchinnikov, “Calculating Galois groups of third-order linear differential equations with parameters”, Commun. Contemp. Math., 20:04 (2018), 1750038  crossref
    5. Carlos E. Arreche, Michael F. Singer, “Galois groups for integrable and projectively integrable linear difference equations”, Journal of Algebra, 480 (2017), 423  crossref
    6. Lucia Di Vizio, Charlotte Hardouin, Michael Wibmer, “DIFFERENCE ALGEBRAIC RELATIONS AMONG SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS”, J. Inst. Math. Jussieu, 16:1 (2017), 59  crossref
    7. Carlos E. Arreche, “On the computation of the parameterized differential Galois group for a second-order linear differential equation with differential parameters”, Journal of Symbolic Computation, 75 (2016), 25  crossref
    8. Andrey Minchenko, Alexey Ovchinnikov, Michael F. Singer, “Reductive Linear Differential Algebraic Groups and the Galois Groups of Parameterized Linear Differential Equations”, International Mathematics Research Notices, 2015:7 (2015), 1733  crossref
    9. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951  mathnet  mathnet  crossref  crossref  isi  scopus
    10. Thomas Dreyfus, “A density theorem in parametrized differential Galois theory”, Pacific J. Math., 271:1 (2014), 87  crossref
    11. Carlos E. Arreche, “Computation of the unipotent radical of the differential Galois group for a parameterized second-order linear differential equation”, Advances in Applied Mathematics, 57 (2014), 44  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:200
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025