The work was supported by the grant of Russian Scientific Foundation (Project No. 14-21-00162).
Received: 23.03.2015 Accepted: 24.07.2015
Bibliographic databases:
Document Type:
Article
Language: English
Linking options:
https://www.mathnet.ru/eng/jmp2
This publication is cited in the following 11 articles:
Alexander S. Holevo, Sergey N. Filippov, “Quantum Gaussian maximizers and log-Sobolev inequalities”, Lett. Math. Phys., 113 (2023), 10–23
A. S. Holevo, “Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers”, Russian Math. Surveys, 77:4 (2022), 766–768
Alexander Holevo, “On the Classical Capacity of General Quantum Gaussian Measurement”, Entropy, 23:3 (2021), 377–14
Grigori Amosov, “On classical capacity of Weyl channels”, Quantum Inf. Process., 19 (2020), 401–11
Alexander S. Holevo, “Gaussian maximizers for quantum Gaussian observables and ensembles”, IEEE Trans. Information Theory, 66:9 (2020), 5634–5641
A. S. Holevo, A. A. Kuznetsova, “Information capacity of continuous variable measurement channel”, J. Phys. A, 53:17 (2020), 175304–13
N. Ginatta, E. Sasso, V. Umanità, “Covariant Uniformly Continuous Quantum Markov Semigroups”, Reports on Mathematical Physics, 84:2 (2019), 131
Stefan Huber, Robert König, “Coherent state coding approaches the capacity of non-Gaussian bosonic channels”, J. Phys. A: Math. Theor., 51:18 (2018), 184001
Giacomo De Palma, Dario Trevisan, Vittorio Giovannetti, Luigi Ambrosio, “Gaussian optimizers for entropic inequalities in quantum information”, Journal of Mathematical Physics, 59:8 (2018)
M. E. Shirokov, “On the energy-constrained diamond norm and its application in quantum information theory”, Problems Inform. Transmission, 54:1 (2018), 20–33
M. E. Shirokov, A. S. Holevo, “On lower semicontinuity of the entropic disturbance and its applications in quantum information theory”, Izv. Math., 81:5 (2017), 1044–1060