Loading [MathJax]/jax/output/SVG/config.js
Journal of Mathematical Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Mathematical Physics, 2016, Volume 57, Issue 1, 15203, 11 pp.
DOI: https://doi.org/10.1063/1.4928050
(Mi jmp2)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the constrained classical capacity of infinite-dimensional covariant quantum channels

A. S. Holevo

Steklov Mathematical Institute, 119991 Moscow, Russia
Citations (11)
Funding agency Grant number
Russian Science Foundation 14-21-00162
The work was supported by the grant of Russian Scientific Foundation (Project No. 14-21-00162).
Received: 23.03.2015
Accepted: 24.07.2015
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/jmp2
  • This publication is cited in the following 11 articles:
    1. Alexander S. Holevo, Sergey N. Filippov, “Quantum Gaussian maximizers and log-Sobolev inequalities”, Lett. Math. Phys., 113 (2023), 10–23  mathnet  crossref
    2. A. S. Holevo, “Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers”, Russian Math. Surveys, 77:4 (2022), 766–768  mathnet  mathnet  crossref  crossref  isi  scopus
    3. Alexander Holevo, “On the Classical Capacity of General Quantum Gaussian Measurement”, Entropy, 23:3 (2021), 377–14  mathnet  crossref  isi  scopus
    4. Grigori Amosov, “On classical capacity of Weyl channels”, Quantum Inf. Process., 19 (2020), 401–11  mathnet  crossref  isi  scopus
    5. Alexander S. Holevo, “Gaussian maximizers for quantum Gaussian observables and ensembles”, IEEE Trans. Information Theory, 66:9 (2020), 5634–5641  mathnet  crossref  isi  scopus
    6. A. S. Holevo, A. A. Kuznetsova, “Information capacity of continuous variable measurement channel”, J. Phys. A, 53:17 (2020), 175304–13  mathnet  crossref  isi  scopus
    7. N. Ginatta, E. Sasso, V. Umanità, “Covariant Uniformly Continuous Quantum Markov Semigroups”, Reports on Mathematical Physics, 84:2 (2019), 131  crossref
    8. Stefan Huber, Robert König, “Coherent state coding approaches the capacity of non-Gaussian bosonic channels”, J. Phys. A: Math. Theor., 51:18 (2018), 184001  crossref
    9. Giacomo De Palma, Dario Trevisan, Vittorio Giovannetti, Luigi Ambrosio, “Gaussian optimizers for entropic inequalities in quantum information”, Journal of Mathematical Physics, 59:8 (2018)  crossref
    10. M. E. Shirokov, “On the energy-constrained diamond norm and its application in quantum information theory”, Problems Inform. Transmission, 54:1 (2018), 20–33  mathnet  mathnet  crossref  isi  scopus
    11. M. E. Shirokov, A. S. Holevo, “On lower semicontinuity of the entropic disturbance and its applications in quantum information theory”, Izv. Math., 81:5 (2017), 1044–1060  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:197
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025