Journal of Mathematical Analysis and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Mathematical Analysis and Applications, 2014, Volume 411, Issue 1, Pages 261–270
DOI: https://doi.org/10.1016/j.jmaa.2013.09.043
(Mi jmaa4)
 

This article is cited in 21 scientific papers (total in 21 papers)

On solutions of Kolmogorov's equations for nonhomogeneous jump Markov processes

E. A. Feinberga, M. Mandavaa, A. N. Shiryaevb

a Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA 11794-3600
b Steklov Mathematical Institute, 8, Gubkina Str., Moscow, Russia 119991
Citations (21)
Abstract: This paper studies three ways to construct a nonhomogeneous jump Markov process: (i) via a compensator of the random measure of a multivariate point process, (ii) as a minimal solution of the backward Kolmogorov equation, and (iii) as a minimal solution of the forward Kolmogorov equation. The main conclusion of this paper is that, for a given measurable transition intensity, commonly called a Q-function, all these constructions define the same transition function. If this transition function is regular, that is, the probability of accumulation of jumps is zero, then this transition function is the unique solution of the backward and forward Kolmogorov equations. For continuous Q-functions, Kolmogorov equations were studied in Feller's seminal paper. In particular, this paper extends Feller's results for continuous Q-functions to measurable Q-functions and provides additional results.
Funding agency Grant number
National Science Foundation CMMI-1335296
CMMI-0928490
This research was partially supported by NSF grants CMMI-0928490 and CMMI-1335296.
Received: 23.02.2013
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/jmaa4
  • This publication is cited in the following 21 articles:
    1. Manuel L. Esquível, Nadezhda P. Krasii, Gracinda R. Guerreiro, “Estimation–Calibration of Continuous-Time Non-Homogeneous Markov Chains with Finite State Space”, Mathematics, 12:5 (2024), 668  crossref
    2. Xin Guo, Yonghui Huang, “Risk-sensitive zero-sum games for continuous-time jump processes with unbounded rates and Borel spaces”, Stochastics, 2024, 1  crossref
    3. E. A. Feinberg, A. N. Shiryaev, “On forward and backward Kolmogorov equations for purely jump Markov processes and their generalizations”, Theory Probab. Appl., 68:4 (2024), 643–656  mathnet  mathnet  crossref  crossref  scopus
    4. Madalina Deaconu, Antoine Lejay, “Probabilistic representations of fragmentation equations”, Probab. Surveys, 20:none (2023)  crossref
    5. Eugene A. Feinberg, Manasa Mandava, Albert N. Shiryaev, “Sufficiency of Markov policies for continuous-time jump Markov decision processes”, Math. Oper. Res., 47:2 (2022), 1266–1286  mathnet  crossref  isi
    6. Bertrand Cloez, Josué Corujo, “Uniform in time propagation of chaos for a Moran model”, Stochastic Processes and their Applications, 154 (2022), 251  crossref
    7. Eugene Feinberg, Manasa Mandava, Albert N. Shiryaev, “Kolmogorov’s equations for jump Markov processes with unbounded jump rates”, Ann. Oper. Res., 317 (2022), 587–604  mathnet  crossref  isi  scopus
    8. E. A. Feinberg, A. N. Shiryaev, “Kolmogorov's equations for jump Markov processes and their applications to control problems”, Theory Probab. Appl., 66:4 (2022), 582–600  mathnet  mathnet  crossref  crossref  scopus
    9. Xin Guo, Yonghui Huang, “Risk-sensitive average continuous-time Markov decision processes with unbounded transition and cost rates”, J. Appl. Probab., 58:2 (2021), 523  crossref
    10. Xianping Guo, Junyu Zhang, “Risk-sensitive continuous-time Markov decision processes with unbounded rates and Borel spaces”, Discrete Event Dyn Syst, 29:4 (2019), 445  crossref
    11. Yi Zhang, “On the Nonexplosion and Explosion for Nonhomogeneous Markov Pure Jump Processes”, J Theor Probab, 31:3 (2018), 1322  crossref
    12. Qingda Wei, “Zero-sum games for continuous-time Markov jump processes with risk-sensitive finite-horizon cost criterion”, Operations Research Letters, 46:1 (2018), 69  crossref
    13. Xin Guo, Alexey Piunovskiy, Yi Zhang, “Note on discounted continuous-time Markov decision processes with a lower bounding function”, J. Appl. Probab., 54:4 (2017), 1071  crossref
    14. Xianping Guo, Yonghui Huang, Yi Zhang, “Constrained Continuous-Time Markov Decision Processes on the Finite Horizon”, Appl Math Optim, 75:2 (2017), 317  crossref
    15. Xianping Guo, Yi Zhang, “Constrained total undiscounted continuous-time Markov decision processes”, Bernoulli, 23:3 (2017)  crossref
    16. David Hobson, “Mimicking martingales”, Ann. Appl. Probab., 26:4 (2016)  crossref
    17. Xianping Guo, Xiangxiang Huang, Yonghui Huang, “Finite-horizon optimality for continuous-time Markov decision processes with unbounded transition rates”, Advances in Applied Probability, 47:4 (2015), 1064  crossref
    18. Alexander Sokol, Niels Richard Hansen, “Exponential Martingales and Changes of Measure for Counting Processes”, Stochastic Analysis and Applications, 33:5 (2015), 823  crossref
    19. Xianping Guo, Xiangxiang Huang, Yonghui Huang, “Finite-horizon optimality for continuous-time Markov decision processes with unbounded transition rates”, Adv. Appl. Probab., 47:04 (2015), 1064  crossref
    20. Yi Zhang, “Average Optimality for Continuous-Time Markov Decision Processes Under Weak Continuity Conditions”, J. Appl. Probab., 51:04 (2014), 954  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:141
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025