Abstract:
Iron borate FeBO3 crystals are annealed in neutral, oxidizing, and reducing gas media on a specially designed setup. The effect of the chemical medium and annealing modes on the surface morphology and phase composition of the samples is established. It is shown that annealing in a neutral or oxidizing medium leads to the recrystallization of FeBO3 into the hematite α-Fe2O3 phase, whereas annealing in a reducing medium results in the formation of the pyroborate Fe2B2O5 phase and the metal α-Fe iron phase. The difference in the nature of structural transformations is associated with the change in the valence state of iron ions upon annealing in the reducing atmosphere. This result is of interest as a method for the transformation of crystalline phases.
This work was supported by the Russian Foundation for Basic Research (project no. 19-29-12016-mk, development of the experimental setup and the production of crystalline samples). The X-ray phase analysis and scanning electron microscopy measurements were performed using the equipment of the Shared Research Center and were supported by the Ministry of Science and Higher Education of the Russian Federation (project no. RFMEFI62119X0035, state assignment for the Federal Research Center Crystallography and Photonics).
Citation:
N. I. Snegirev, I. S. Lyubutin, S. V. Yagupov, A. G. Kulikov, V. V. Artemov, Yu. A. Mogilenec, M. B. Strugatsky, “Formation of new crystalline phases upon high-temperature annealing of iron borate FeBo3 in different gas media”, Pis'ma v Zh. Èksper. Teoret. Fiz., 112:6 (2020), 374–378; JETP Letters, 112:6 (2020), 352–356
\Bibitem{SneLyuYag20}
\by N.~I.~Snegirev, I.~S.~Lyubutin, S.~V.~Yagupov, A.~G.~Kulikov, V.~V.~Artemov, Yu.~A.~Mogilenec, M.~B.~Strugatsky
\paper Formation of new crystalline phases upon high-temperature annealing of iron borate FeBo$_3$ in different gas media
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2020
\vol 112
\issue 6
\pages 374--378
\mathnet{http://mi.mathnet.ru/jetpl6258}
\crossref{https://doi.org/10.31857/S1234567820180068}
\elib{https://elibrary.ru/item.asp?id=45130756}
\transl
\jour JETP Letters
\yr 2020
\vol 112
\issue 6
\pages 352--356
\crossref{https://doi.org/10.1134/S0021364020180113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000593001500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096540088}
Linking options:
https://www.mathnet.ru/eng/jetpl6258
https://www.mathnet.ru/eng/jetpl/v112/i6/p374
This publication is cited in the following 8 articles:
N. I. Snegirev, A. G. Kulikov, I. S. Lyubutin, A. Yu. Seregin, S. V. Yagupov, M. B. Strugatsky, JETP Letters, 119:6 (2024), 464–469
N. I. Snegirev, M. A. Chuev, I. S. Lyubutin, S. S. Starchikov, S. V. Yagupov, M. B. Strugatsky, JETP Letters, 117:10 (2023), 769–775
N. Snegirev, A. Kulikov, I.S. Lyubutin, S. Yagupov, M. Lyubutina, M. Strugatsky, Crystal Growth & Design, 23:8 (2023), 5883
I.S. Lyubutin, N.I. Snegirev, M.A. Chuev, S.S. Starchikov, E.S. Smirnova, M.V. Lyubutina, S.V. Yagupov, M.B. Strugatsky, O.A. Alekseeva, Journal of Alloys and Compounds, 906 (2022), 164348
N. V. Kazak, N. A. Belskaya, E. M. Moshkina, L. A. Solovyov, E. V. Eremin, S. Yu. Gavrilkin, S. G. Ovchinnikov, JETP Letters, 114:2 (2021), 92–97
N. I. Snegirev, I. S. Lyubutin, S. V. Yagupov, M. A. Chuev, N. K. Chumakov, O. M. Zhigalina, D. N. Khmelenin, M. B. Strugatsky, Russ. J. Inorg. Chem., 66:8, SI (2021), 1217–1222
N. Snegirev, I. Lyubutin, A. Kulikov, D. Zolotov, A. Vasiliev, M. Lyubutina, S. Yagupov, Yu. Mogilenec, K. Seleznyova, M. Strugatsky, J. Alloy. Compd., 889 (2021), 161702
I. A. Koop, A. I. Milstein, N. N. Nikolaev, A. S. Popov, S. G. Salnikov, P. Yu. Shatunov, Yu. M. Shatunov, Phys. Part. Nuclei, 52:4 (2021), 549