Abstract:
The hierarchy of characteristic times naturally justifies the necessity of the transition from the initial “exact” Hamiltonian of an open quantum system and its environment to an approximate effective Hamiltonian for the further use of the Markov approximation and the model of the delta-correlated environment of the open system. The transition to the effective Hamiltonian within the algebraic perturbation theory makes it possible to take into account interference relaxation channels and specific interference of random processes that cannot be detected and are absent in the rotating wave approximation. It has been shown that specific interference in the case of an ensemble of identical quantum oscillators results in a non-Wiener dynamics of the ensemble.
Citation:
A. I. Trubilko, A. M. Basharov, “Hierarchy of times of open optical quantum systems and the role of the effective Hamiltonian in the white noise approximation”, Pis'ma v Zh. Èksper. Teoret. Fiz., 111:9 (2020), 632–638; JETP Letters, 111:9 (2020), 532–538
\Bibitem{TruBas20}
\by A.~I.~Trubilko, A.~M.~Basharov
\paper Hierarchy of times of open optical quantum systems and the role of the effective Hamiltonian in the white noise approximation
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2020
\vol 111
\issue 9
\pages 632--638
\mathnet{http://mi.mathnet.ru/jetpl6168}
\crossref{https://doi.org/10.31857/S1234567820090104}
\elib{https://elibrary.ru/item.asp?id=45440902}
\transl
\jour JETP Letters
\yr 2020
\vol 111
\issue 9
\pages 532--538
\crossref{https://doi.org/10.1134/S0021364020090106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548633900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087881371}
Linking options:
https://www.mathnet.ru/eng/jetpl6168
https://www.mathnet.ru/eng/jetpl/v111/i9/p632
This publication is cited in the following 17 articles:
Alexander Evgen'evich Teretenkov, Entropy, 26:1 (2024), 14–24
Kh. Sh. Meretukov, A. E. Teretenkov, Proc. Steklov Inst. Math., 324 (2024), 135–152
A. M. Basharov, Pisma v ZhETF, 120:6 (2024), 417–423
A. E. Teretenkov, Lobachevskii J Math, 45:6 (2024), 2615
A. M. Basharov, Jetp Lett., 120:6 (2024), 404
M. K. Aleksashin, A. M. Basharov, A. I. Trubilko, Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya, 87:10 (2023), 1482
A. Yu. Karasev, A. E. Teretenkov, Lobachevskii J. Math., 44:6 (2023), 2051–2064
M. K. Aleksashin, A. M. Basharov, A. I. Trubilko, Bull. Russ. Acad. Sci. Phys., 87:10 (2023), 1509
Alexander Evgen'evich Teretenkov, Mathematics, 11:18 (2023), 3854–19
Yu. I. Bogdanov, N. A. Bogdanova, D. V. Fastovets, V. F. Lukichev, JETP Letters, 115:8 (2022), 484–490
Alexander Evgen'evich Teretenkov, Entropy, 24:8 (2022), 1144–22
A. E. Teretenkov, Int. J. Mod. Phys. A, 37:20 (2022), 2243020–13
A. M. Basharov, A. I. Trubilko, J. Exp. Theor. Phys., 133:4 (2021), 431–438
A. M. Basharov, A. I. Trubilko, J. Exp. Theor. Phys., 133:6 (2021), 737–743
A. I. Trubilko, A. M. Basharov, J. Exp. Theor. Phys., 132:2 (2021), 216–222
A. I. Trubilko, A. M. Basharov, JETP Letters, 111:12 (2020), 672–678
Basharov A.M., J. Exp. Theor. Phys., 131:5 (2020), 853–875