Abstract:
Owing to the nonlocal character of the Majorana state, the corresponding excitations are of great interest. It is demonstrated that the direct consequence of such nonlocality is the collapse of the Fano resonance manifesting itself in the conductance of an asymmetric interference device, the arms of which are connected by a one-dimensional topological superconductor. In the framework of the spinless model, it is shown that the predicted effect is associated with an increase in the multiplicity of the degeneracy of the zero-energy state of the structure arising at the critical point of the Kitaev model. Such an increase leads to the formation of a bound state in the continuum.
The work was supported by the Presidium of the Russian
Academy of Sciences (Program of Basic Research no. 32
“Nanostructures: Physics, Chemistry, Biology, and Fundamentals of Technologies”), by the Russian Foundation for
Basic Research (project nos. 19-02-00348, 20-32-70059,
and 20-02-00015), and by the Government of the Krasnoyarsk Territory together with the Krasnoyarsk Science
Foundation (project no. 19-42-240011 “Coulomb Interactions in the Problem of Majorana Modes in Low-Dimensional Systems with Nontrivial Topology”). S.V. Aksenov
acknowledges the support of the Council of the President of
the Russian Federation for Support of Young Russian Scientists and Leading Scientific Schools, grant no. MK3722.2018.2. M.Yu. Kagan acknowledges the support of the
National Research University Higher School of Economics
(program of basic research).
Citation:
S. V. Aksenov, M. Yu. Kagan, “Collapse of the Fano resonance caused by the nonlocality of the Majorana state”, Pis'ma v Zh. Èksper. Teoret. Fiz., 111:5 (2020), 321–327; JETP Letters, 111:5 (2020), 286–292
\Bibitem{AksKag20}
\by S.~V.~Aksenov, M.~Yu.~Kagan
\paper Collapse of the Fano resonance caused by the nonlocality of the Majorana state
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2020
\vol 111
\issue 5
\pages 321--327
\mathnet{http://mi.mathnet.ru/jetpl6126}
\crossref{https://doi.org/10.31857/S0370274X20050094}
\elib{https://elibrary.ru/item.asp?id=43281399}
\transl
\jour JETP Letters
\yr 2020
\vol 111
\issue 5
\pages 286--292
\crossref{https://doi.org/10.1134/S0021364020050057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531799700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084428841}
Linking options:
https://www.mathnet.ru/eng/jetpl6126
https://www.mathnet.ru/eng/jetpl/v111/i5/p321
This publication is cited in the following 12 articles:
Maxim Yu. Kagan, Kliment I. Kugel, Alexander L. Rakhmanov, Artem O. Sboychakov, Springer Series in Solid-State Sciences, 201, Electronic Phase Separation in Magnetic and Superconducting Materials, 2024, 1
Maxim Yu. Kagan, Kliment I. Kugel, Alexander L. Rakhmanov, Artem O. Sboychakov, Springer Series in Solid-State Sciences, 201, Electronic Phase Separation in Magnetic and Superconducting Materials, 2024, 231
S. V. Aksenov, M. Yu. Kagan, J Low Temp Phys, 2024
Maxim Yu. Kagan, Kliment I. Kugel, Alexander L. Rakhmanov, Artem O. Sboychakov, Springer Series in Solid-State Sciences, 201, Electronic Phase Separation in Magnetic and Superconducting Materials, 2024, 317
M. Yu. Kagan, S. V. Aksenov, A. V. Turlapov, R. Sh. Ikhsanov, K. I. Kugel, E. A. Mazur, E. A. Kuznetsov, V. M. Silkin, E. A. Burovski, JETP Letters, 117:10 (2023), 755–764
V. V. Val'kov, M. S. Shustin, S. V. Aksenov, A. O. Zlotnikov, A. D. Fedoseev, V. A. Mitskan, M. Yu. Kagan, Phys. Usp., 65:1 (2022), 2–39
N. M. Shubin, V. V. Kapaev, A. A. Gorbatsevich, JETP Letters, 116:4 (2022), 205–211
N. M. Shubin, V. V. Kapaev, A. A. Gorbatsevich, Phys. Rev. B, 106:12 (2022)
S V Aksenov, J. Phys.: Condens. Matter, 34:25 (2022), 255301
M. Moskalets, Physica E, 127 (2021), 114531
N. M. Shubin, A. V. Friman, V. V. Kapaev, A. A. Gorbatsevich, Phys. Rev. B, 104:12 (2021), 125414