Abstract:
A hydrodynamic theory of the linear response of a noncollinearly magnetized medium interacting with electromagnetic radiation has been developed. Linear and quadratic magnetization effects caused by the spatial inhomogeneity of the magnetic moment have been analyzed. Linear magnetization effects include an effect similar to nonreciprocal birefringence, as well as reciprocal and nonreciprocal rotation of the plane of polarization, caused by the inhomogeneity of the magnetic moment. It has been shown that an effect caused by the equilibrium spin current can appear in the considered medium. This effect is determined either by the inhomogeneity of the spin current or by the spatial dispersion of a wave. The effect associated with the spatial dispersion of the wave is linear in its wave vector and is similar to nonreciprocal birefringence. The effect associated with the inhomogeneity of the spin current describes the rotation of the plane of polarization, which, however, can occur in the system with zero average magnetization.
Citation:
E. A. Karashtin, “Linear optic response of a noncollinear magnetic system: hydrodynamic theory”, Pis'ma v Zh. Èksper. Teoret. Fiz., 108:2 (2018), 88–92; JETP Letters, 108:2 (2018), 97–101
\Bibitem{Kar18}
\by E.~A.~Karashtin
\paper Linear optic response of a noncollinear magnetic system: hydrodynamic theory
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2018
\vol 108
\issue 2
\pages 88--92
\mathnet{http://mi.mathnet.ru/jetpl5623}
\crossref{https://doi.org/10.1134/S0370274X18140035}
\elib{https://elibrary.ru/item.asp?id=35592444}
\transl
\jour JETP Letters
\yr 2018
\vol 108
\issue 2
\pages 97--101
\crossref{https://doi.org/10.1134/S0021364018140072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000445757300003}
\elib{https://elibrary.ru/item.asp?id=35736553}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053866037}
Linking options:
https://www.mathnet.ru/eng/jetpl5623
https://www.mathnet.ru/eng/jetpl/v108/i2/p88
This publication is cited in the following 3 articles:
E. A. Karashtin, N. S. Gusev, M. V. Sapozhnikov, P. Yu. Avdeev, A. L. Alferev, E. D. Lebedeva, A. M. Buryakov, E. D. Mishina, Pisma v ZhETF, 121:3 (2025), 215–222
E. A. Karashtin, N. S. Gusev, M. V. Sapozhnikov, P. Yu. Avdeev, A. L. Alfer'ev, E. D. Lebedeva, A. M. Buryakov, E. D. Mishina, Jetp Lett., 121:3 (2025), 195
T. V. Murzina, I. A. Kolmychek, N. S. Gusev, A. I. Maidykovskii, JETP Letters, 111:6 (2020), 333–337