Abstract:
The inverse Faraday effect in iron garnet films subjected to femtosecond laser pulses is experimentally investigated. It is found that the magnitude of the observed effect depends nonlinearly on the energy of the optical pump pulses, which is in contradiction with the notion that the inverse Faraday effect is linear with respect to the pump energy. Thus, for pump pulses with a central wavelength of 650 nm and an energy density of 1 mJ/cm2, the deviation from a linear dependence is as large as 50%. Analysis of the experimental data demonstrates that the observed behavior is explained by the fact that the optically induced normal component of the magnetization is determined, apart from the field resulting from the inverse Faraday effect, by a decrease in the magnitude of the precessing magnetization under the influence of the femtosecond electromagnetic field.
Citation:
M. A. Kozhaev, A. I. Chernov, I. V. Savochkin, A. N. Kuz'michev, A. K. Zvezdin, V. I. Belotelov, “Peculiarities of the inverse Faraday effect induced in iron garnet films by femtosecond laser pulses”, Pis'ma v Zh. Èksper. Teoret. Fiz., 104:12 (2016), 851–855; JETP Letters, 104:12 (2016), 833–837
\Bibitem{KozCheSav16}
\by M.~A.~Kozhaev, A.~I.~Chernov, I.~V.~Savochkin, A.~N.~Kuz'michev, A.~K.~Zvezdin, V.~I.~Belotelov
\paper Peculiarities of the inverse Faraday effect induced in iron garnet films by femtosecond laser pulses
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 104
\issue 12
\pages 851--855
\mathnet{http://mi.mathnet.ru/jetpl5139}
\crossref{https://doi.org/10.7868/S0370274X16240036}
\elib{https://elibrary.ru/item.asp?id=26427030}
\transl
\jour JETP Letters
\yr 2016
\vol 104
\issue 12
\pages 833--837
\crossref{https://doi.org/10.1134/S0021364016240097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395060600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013664051}
Linking options:
https://www.mathnet.ru/eng/jetpl5139
https://www.mathnet.ru/eng/jetpl/v104/i12/p851
This publication is cited in the following 9 articles:
Da Yan, Han Wang, Appl. Phys. A, 129:7 (2023)
A. Frej, C.S. Davies, A. Kirilyuk, A. Stupakiewicz, Journal of Magnetism and Magnetic Materials, 568 (2023), 170416
Daria A. Sylgacheva, Nikolai E. Khokhlov, Petr I. Gerevenkov, Iaroslav A. Filatov, Mikhail A. Kozhaev, Igor V. Savochkin, Andrey N. Kalish, Alexandra M. Kalashnikova, Vladimir I. Belotelov, Nanophotonics, 11:13 (2022), 3169
A. L. Chekhov, A. I. Stognij, T. Satoh, T. V. Murzina, I. Razdolski, A. Stupakiewic, Nano Lett., 18:5 (2018), 2970–2975
M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, V. I. Belotelov, Sci Rep, 8 (2018), 11435
A. K. Zvezdin, M. D. Davydova, K. A. Zvezdin, Phys. Usp., 61:11 (2018), 1127–1136
A. I. Chernov, M. A. Kozhaev, A. K. Zvezdin, V. I. Belotelov, Frontiers in Theoretical and Applied Physics/Uae 2017 (Ftaps 2017), Journal of Physics Conference Series, 869, eds. A. Alnaser, R. Allen, S. Lidstrom, S. AbdelNaby, R. Syed, S. Sakhi, Y. Salamin, M. Egilmez, ElKhatib, IOP Publishing Ltd, 2017
I. V. Savochkin, M. A. Kozhaev, A. I. Chernov, A. N. Kuz'michev, A. K. Zvezdin, V. I. Belotelov, Phys. Solid State, 59:5 (2017), 904–908
A I Chernov, M A Kozhaev, A K Zvezdin, V I Belotelov, J. Phys.: Conf. Ser., 869 (2017), 012020