Abstract:
The features of the characteristics of LnCoO3 cobaltites, where Ln is a rare-earth element, are discussed. Both experiment and theory demonstrate that their essentials are related to the low-spin ground state of cobalt ions. The thermally induced occupation of the excited high-spin state gives rise to peaks in the magnetic susceptibility, specific heat, and thermal expansion, as well as to a smooth insulator-metal transition. The analysis is based both on the data from the current literature concerning LaCoO3 and in many aspects on our own studies of GdCoO3 and La1−xGdxCoO3 solid solutions.
Citation:
V. A. Dudnikov, Yu. S. Orlov, N. V. Kazak, M. S. Platunov, S. G. Ovchinnikov, “Anomalies of the electronic structure and physical properties of rare-earth cobaltites near spin crossover”, Pis'ma v Zh. Èksper. Teoret. Fiz., 104:8 (2016), 604–616; JETP Letters, 104:8 (2016), 588–600
\Bibitem{DudOrlKaz16}
\by V.~A.~Dudnikov, Yu.~S.~Orlov, N.~V.~Kazak, M.~S.~Platunov, S.~G.~Ovchinnikov
\paper Anomalies of the electronic structure and physical properties of rare-earth cobaltites near spin crossover
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 104
\issue 8
\pages 604--616
\mathnet{http://mi.mathnet.ru/jetpl5099}
\crossref{https://doi.org/10.7868/S0370274X16200121}
\elib{https://elibrary.ru/item.asp?id=26935588}
\transl
\jour JETP Letters
\yr 2016
\vol 104
\issue 8
\pages 588--600
\crossref{https://doi.org/10.1134/S002136401620011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392145200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008517739}
Linking options:
https://www.mathnet.ru/eng/jetpl5099
https://www.mathnet.ru/eng/jetpl/v104/i8/p604
This publication is cited in the following 7 articles:
Maxim Yu. Kagan, Kliment I. Kugel, Alexander L. Rakhmanov, Artem O. Sboychakov, Springer Series in Solid-State Sciences, 201, Electronic Phase Separation in Magnetic and Superconducting Materials, 2024, 91
M. Yu. Kagan, K. I. Kugel, A. L. Rakhmanov, Phys. Rep.-Rev. Sec. Phys. Lett., 916 (2021), 1–105
V. R. Galakhov, Phys. Metals Metallogr., 122:2 (2021), 83–114
V. G. Yarzhemsky, Yu. A. Teterin, I. A. Presnyakov, K. I. Maslakov, A. Yu. Teterin, K. E. Ivanov, JETP Letters, 111:8 (2020), 422–427
Yu. S. Orlov, A. E. Sokolov, V. A. Dudnikov, K. V. Shulga, M. N. Volochaev, S. M. Zharkov, N. P. Shestakov, M. A. Vysotin, S. G. Ovchinnikov, Molecules, 25:18 (2020), 4316
P. A. Krawczyk, M. Jurczyszyn, J. Pawlak, W. Salamon, P. Baran, A. Kmita, L. Gondek, M. Sikora, C. Kapusta, T. Straczek, J. Wyrwa, A. Zywczak, ACS Appl. Electron. Mater., 2:10 (2020), 3211–3220
V. A. Dudnikov, Yu. S. Orlov, M. V. Bushinsky, L. A. Solovyov, S. N. Vereshchagin, S. Yu. Gavrilkin, A. Yu. Tsvetkov, M. V. Gorev, S. V. Novikov, O. S. Mantytskaya, S. G. Ovchinnikov, J. Alloy. Compd., 830 (2020), 154629