Loading [MathJax]/jax/output/SVG/config.js
Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2016, Volume 104, Issue 4, Pages 222–228
DOI: https://doi.org/10.7868/S0370274X16160037
(Mi jetpl5038)
 

This article is cited in 22 scientific papers (total in 22 papers)

OPTICS AND NUCLEAR PHYSICS

Selective reflection from Rb vapor in half- and quarter-wave cells: Features and possible applications

A. Sargsyana, E. Klingerb, Y. Pashayan-Leroyb, C. Leroyb, A. Papoyana, D. G. Sarkisyana

a Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Armenia
b Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne-Franche-Comté, Dijon Cedex, France
References:
Abstract: The features of the effect of selective reflection from rubidium vapor in a nanocell with the thickness $L\approx\lambda/2$ and $L\approx\lambda/4$, where $\lambda = 795$ nm is the wavelength of laser radiation resonant with the Rb $D_1$ line, are studied. It is shown that, because of the behavior of the nanocell as a low-$Q$-factor Fabry–Pérot etalon, the sign of the derivative of the selective reflection spectra changes near $L\approx\lambda/2$ from negative at $L>\lambda/2$ to positive at $L<\lambda/2$. The simplicity of the experimental implementation, large amplitude, and sub-Doppler width ($40$MHz) of a detected signal at an atomic transition frequency are appropriate for applications in metrology and magnetometry. In particular, selective reflection from the nanocell is a convenient frequency marker of atomic transitions; in this case, the amplitudes of peaks are proportional to the transition probabilities. The remote optical monitoring of a magnetic field with a spatial resolution $L=\lambda/4\approx199$ of nm is possible on the basis of the splitting of selective reflection peaks in a strong magnetic field (up to $3$ kG). A theoretical model describes well the experimental results.
Received: 21.06.2016
English version:
Journal of Experimental and Theoretical Physics Letters, 2016, Volume 104, Issue 4, Pages 224–230
DOI: https://doi.org/10.1134/S002136401616013X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Sargsyan, E. Klinger, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, D. G. Sarkisyan, “Selective reflection from Rb vapor in half- and quarter-wave cells: Features and possible applications”, Pis'ma v Zh. Èksper. Teoret. Fiz., 104:4 (2016), 222–228; JETP Letters, 104:4 (2016), 224–230
Citation in format AMSBIB
\Bibitem{SarKliPas16}
\by A.~Sargsyan, E.~Klinger, Y.~Pashayan-Leroy, C.~Leroy, A.~Papoyan, D.~G.~Sarkisyan
\paper Selective reflection from Rb vapor in half- and quarter-wave cells: Features and possible applications
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2016
\vol 104
\issue 4
\pages 222--228
\mathnet{http://mi.mathnet.ru/jetpl5038}
\crossref{https://doi.org/10.7868/S0370274X16160037}
\elib{https://elibrary.ru/item.asp?id=26463507}
\transl
\jour JETP Letters
\yr 2016
\vol 104
\issue 4
\pages 224--230
\crossref{https://doi.org/10.1134/S002136401616013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000387337200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84993993146}
Linking options:
  • https://www.mathnet.ru/eng/jetpl5038
  • https://www.mathnet.ru/eng/jetpl/v104/i4/p222
  • This publication is cited in the following 22 articles:
    1. Armen Sargsyan, Anahit Gogyan, David Sarkisyan, Journal of Quantitative Spectroscopy and Radiative Transfer, 2024, 109197  crossref
    2. Sargsyan A. Sarkisyan A.S. Tonoyan A. Sarkisyan D., J. Appl. Spectrosc., 88:6 (2022), 1105–1110  crossref  isi
    3. M. Auzinsh, A. Sargsyan, A. Tonoyan, C. Leroy, R. Momier, D. Sarkisyan, A. Papoyan, Appl. Opt., 61:19 (2022), 5749  crossref
    4. D Pizzey, J D Briscoe, F D Logue, F S Ponciano-Ojeda, S A Wrathmall, I G Hughes, New J. Phys., 24:12 (2022), 125001  crossref
    5. A. Aleksanyan, R. Momier, E. Gazazyan, A. Papoyan, C. Leroy, J. Opt. Soc. Am. B-Opt. Phys., 37:11 (2020), 3504–3514  crossref  isi  scopus
    6. E. Klinger, H. Azizbekyan, A. Sargsyan, C. Leroy, D. Sarkisyan, A. Papoyan, Appl. Optics, 59:8 (2020), 2231–2237  crossref  isi
    7. R. Momier, A. Aleksanyan, E. Gazazyan, A. Papoyan, C. Leroy, J. Quant. Spectrosc. Radiat. Transf., 257 (2020), 107371  crossref  isi
    8. D. N. Khachatryan, Opt. Commun., 436 (2019), 76–81  crossref  isi  scopus
    9. A. Sargsyan, A. Amiryan, T. A. Vartanyan, D. Sarkisyan, Opt. Spectrosc., 126:3 (2019), 173–180  crossref  isi
    10. A. Sargsyan, E. Klinger, C. Leroy, I. G. Hughes, D. Sarkisyan, C. S. Adams, J. Phys. B-At. Mol. Opt. Phys., 52:19 (2019), 195001  crossref  isi  scopus
    11. A. Sargsyan, E. Klinger, C. Leroy, T. A. Vartanyan, D. Sarkisyan, Opt. Spectrosc., 127:3 (2019), 411–417  crossref  isi  scopus
    12. E. Talker, P. Arora, Y. Barash, D. Wilkowski, U. Levy, Opt. Express, 27:23 (2019), 33445–33458  crossref  isi  scopus
    13. A. Sargsyan, A. Tonoyan, J. Keaveney, I. G. Hughes, C. S. Adams, D. Sarkisyan, J. Exp. Theor. Phys., 126:3 (2018), 293–301  crossref  mathscinet  isi
    14. A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, D. Sarkisyan, EPL, 121:5 (2018), 53001  crossref  isi
    15. A. Sargsyan, E. Klinger, A. Tonoyan, C. Leroy, D. Sarkisyan, J. Phys. B-At. Mol. Opt. Phys., 51:14 (2018), 145001  crossref  isi  scopus
    16. A. D. Sargsyan, A. S. Sarkisyan, D. H. Sarkisyan, J. Contemp. Phys.-Armen. Acad. Sci., 53:4 (2018), 301–312  crossref  isi  scopus
    17. E. Klinger, J. Contemp. Phys.-Armen. Acad. Sci., 53:4 (2018), 313–323  crossref  isi  scopus
    18. E. Klinger, A. Sargsyan, C. Leroy, D. Sarkisyan, J. Exp. Theor. Phys., 125:4 (2017), 543–550  crossref  isi
    19. A. Sargsyan, A. Papoyan, I. G. Hughes, Ch. S. Adams, D. Sarkisyan, Opt. Lett., 42:8 (2017), 1476–1479  crossref  isi
    20. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, D. Sarkisyan, J. Opt. Soc. Am. B-Opt. Phys., 34:4 (2017), 776–784  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :53
    References:53
    First page:6
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025