Loading [MathJax]/jax/output/SVG/config.js
Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2009, Volume 90, Issue 2, Pages 156–162 (Mi jetpl488)  

This article is cited in 17 scientific papers (total in 17 papers)

CONDENSED MATTER

Two-photon correlations of luminescence at the Bose-Einstein condensation of dipolar excitons

A. V. Gorbunova, V. B. Timofeeva, D. A. Deminb, A. A. Dremina

a Institute of Solid State Physics, Russian Academy of Sciences
b Moscow Institute of Physics and Technology
References:
Abstract: Correlations of the luminescence intensity (the second-order correlation function g (2)(τ)), where τ is the delay time between the photons detected in pairs) under the conditions of the Bose-Einstein condensation (BEC) of dipolar excitons has been studied in a temperature range of 0.45–4.2 K. Photoexcited dipolar excitons have been accumulated in a lateral trap in a GaAs/AlGaAs Schottky diode with a 25-nm wide single quantum well with an electric bias applied across the heterolayers. Two-photon correlations have been measured with the use of a two-beam intensity interferometer with a time resolution of }~0.4 ns according to the well-known classical Hanbury-Brown-Twiss scheme. The photon bunching has been observed at the onset of Bose-Einstein condensation manifested by the appearance of a narrow exciton condensate line in the luminescence spectrum at an increase in the optical pumping (the line width near the threshold is ≲200 μeV). At the same time, the two-photon correlation function itself obeys the super-Poisson distribution, g (2)(τ) > 1, at time scale τc ≲ 1 ns of the system coherence. The photon bunching is absent at a pumping level substantially below the condensation threshold. The effect of bunching also decreases at pumping significantly above the threshold, when the narrow exciton condensate line starts to dominate in the luminescence spectra, and finally disappears with the further increase in the optical excitation. In this region, the distribution of pair photon correlations is a Poisson distribution manifesting the united quantum coherent state of the exciton condensate. Under the same conditions, the first-order spatial correlation function g (1)(r) determined from the interference pattern of the luminescence signals from the spatially separated parts of the condensate at constant pumping remains noticeable at distances of no less than 4 μm. The discovered effect of photon bunching is very sensitive to temperature and decreases by several times with a temperature increase in the range of 0.45–4.2 K. Assuming that the luminescence of the dipolar excitons directly reflects the coherence properties of the gas of interacting excitons, the discovered photon bunching at the onset of condensation, where the fluctuations of the exciton density and, consequently, of the luminescence intensity are most significant, indicates a phase transition in the interacting Bose gas of excitons, which is an independent way of detecting the Bose-Einstein condensation of excitons.
Received: 24.06.2009
English version:
Journal of Experimental and Theoretical Physics Letters, 2009, Volume 90, Issue 2, Pages 146–151
DOI: https://doi.org/10.1134/S0021364009140148
Bibliographic databases:
Document Type: Article
PACS: 73.21.Fg, 78.67.De
Language: Russian


Citation: A. V. Gorbunov, V. B. Timofeev, D. A. Demin, A. A. Dremin, “Two-photon correlations of luminescence at the Bose-Einstein condensation of dipolar excitons”, Pis'ma v Zh. Èksper. Teoret. Fiz., 90:2 (2009), 156–162; JETP Letters, 90:2 (2009), 146–151
Linking options:
  • https://www.mathnet.ru/eng/jetpl488
  • https://www.mathnet.ru/eng/jetpl/v90/i2/p156
  • This publication is cited in the following 17 articles:
    1. R. D. Ivanovskikh, I. L. Kurbakov, N. A. Asriyan, Yu. E. Lozovik, Phys. Rev. B, 111:12 (2025)  crossref
    2. Timofey V. Maximov, I. L. Kurbakov, Nina S. Voronova, Yurii E. Lozovik, Phys. Rev. B, 108:19 (2023)  crossref
    3. Asriyan N.A., Kurbakov I.L., Fedorov A.K., Lozovik Yu.E., Phys. Rev. B, 99:8 (2019), 085108  crossref  isi  scopus
    4. Voronova N.S. Kurbakov I.L. Lozovik Yu.E., Proceedings of Spie, 10912, ed. Witzigmann B. Osinski M. Arakawa Y., Spie-Int Soc Optical Engineering, 2019, UNSP 1091205  crossref  isi  scopus
    5. Gorbunov A.V., Timofeev V.B., Low Temp. Phys., 42:5 (2016), 340–346  crossref  isi  elib  scopus
    6. Bagaev V.S. Davletov E.T. Krivobok V.S. Nikolaev S.N. Novikov A.V. Onishchenko E.E. Pruchkina A.A. Skorikov M.L., J. Exp. Theor. Phys., 121:6 (2015), 1052–1066  crossref  adsnasa  isi  elib  scopus
    7. Fedorov A.K., Kurbakov I.L., Lozovik Yu.E., Phys. Rev. B, 90:16 (2014), 165430  crossref  adsnasa  isi  elib  scopus
    8. Tizei Luiz Henrique Galvao, Meuret S., Nagarajan S., Treussart F., Fang Ch.-Y., Chang H.-Ch., Kociak M., Phys. Status Solidi A-Appl. Mat., 210:10 (2013), 2060–2065  crossref  isi  elib  scopus
    9. A. V. Gorbunov, V. B. Timofeev, JETP Letters, 96:2 (2012), 138–147  mathnet  crossref  isi  elib  elib
    10. Kalinin P.A. Kocharovsky V.V. Kocharovsky V.V., Semiconductors, 46:11 (2012), 1351–1357  crossref  mathscinet  adsnasa  isi  elib  scopus
    11. Kalinin P.A. Kocharovsky V.V. Kocharovsky V.V., Solid State Commun., 152:12 (2012), 1008–1011  crossref  adsnasa  isi  elib  scopus
    12. Timofeev V.B., Gorbunov A.V., Demin D.A., Low Temperature Physics, 37:3 (2011), 179–187  crossref  adsnasa  isi  elib  scopus
    13. Timofeev V.B., Gorbunov A.V., Physics of Semiconductors: 30th International Conference on the Physics of Semiconductors, AIP Conference Proceedings, 1399, 2011  isi
    14. Efimkin D.K., Lozovik Yu.E., Zh Èksper Teoret Fiz, 113:5 (2011), 880–886  crossref  isi  scopus
    15. Kalinin P.A., Kocharovsky V.V., Kocharovsky V.V., Radiophysics and Quantum Electronics, 54:4 (2011), 264–273  crossref  isi  elib  scopus
    16. Kalinin P.A., Kocharovsky V.V., Kocharovsky V.V., Radiophysics and Quantum Electronics, 54:5 (2011), 316–333  crossref  mathscinet  isi  elib  scopus
    17. Petr A. Kalinin, Vitaly V. Kocharovsky, Vladimir V. Kocharovsky, 2010 10th International Conference on Laser and Fiber-Optical Networks Modeling, 2010, 183  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :102
    References:63
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025