Abstract:
The behavior of the electrical resistivity ρ(T)ρ(T), the superconducting transition temperature TcTc, and the upper critical field Hc2(T)Hc2(T) of a polycrystalline sample of YNi22B22C irradiated by thermal neutrons with the subsequent high-temperature isochronous annealing in the temperature interval Tann=(100Tann=(100–1000)∘1000)∘C has been studied. It has been found that the irradiation of YNi22B22C with a fluence of 10191019cm−2−2 leads to the suppression of the superconductivity. The final disordered state is reversible; i.e., the initial ρ(T)ρ(T), TcTc, and Hc2(T)Hc2(T) values are almost completely recovered upon annealing at up to Tann=1000∘Tann=1000∘C. The quadratic dependence ρ(T)=ρ0+a2T2ρ(T)=ρ0+a2T2 is observed for the sample in the superconducting state (Tc=(5.5Tc=(5.5–14.5)14.5) K). The coefficient a2a2 (proportional to the square of the electron mass m∗m∗) hardly changes. The form of the dependence of TcTc on ρ0ρ0 can be interpreted as the suppression of the two superconducting gaps, Δ1Δ1 and Δ2Δ2(Δ1∼2Δ2)(Δ1∼2Δ2). The degradation rate of Δ1Δ1 is about three times higher than that of Δ2Δ2. The dependences dHc2/dTdHc2/dT on ρ0ρ0 and TcTc may be described by the relations for a superconductor in the intermediate limit (the coherence length ξ0ξ0 is on the order of the electron mean free path ltrltr) under the assumption of a nearly constant electron density of states on the Fermi level N(EFN(EF. The observed behavior of TcTc obviously does not agree with the widespread opinion about the purely electron-phonon mechanism of superconductivity in the compounds of this type supposing the anomalous type of superconducting pairing.
Citation:
A. E. Kar'kin, Yu. N. Akshentsev, B. N. Goshchitskii, “Suppression of superconductivity in YNi22B22C at the atomic disordering”, Pis'ma v Zh. Èksper. Teoret. Fiz., 97:6 (2013), 392–397; JETP Letters, 97:6 (2013), 347–351
\Bibitem{KarAksGos13}
\by A.~E.~Kar'kin, Yu.~N.~Akshentsev, B.~N.~Goshchitskii
\paper Suppression of superconductivity in YNi$_2$B$_2$C at the atomic disordering
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2013
\vol 97
\issue 6
\pages 392--397
\mathnet{http://mi.mathnet.ru/jetpl3383}
\crossref{https://doi.org/10.7868/S0370274X13060118}
\elib{https://elibrary.ru/item.asp?id=21009128}
\transl
\jour JETP Letters
\yr 2013
\vol 97
\issue 6
\pages 347--351
\crossref{https://doi.org/10.1134/S0021364013060076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319387400011}
\elib{https://elibrary.ru/item.asp?id=20429881}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878133694}
Linking options:
https://www.mathnet.ru/eng/jetpl3383
https://www.mathnet.ru/eng/jetpl/v97/i6/p392
This publication is cited in the following 5 articles:
Emil Burzo, Rare Earths-Transition Metals-Boron Compounds, 2023, 377
Uzunok H.Y., Physica C, 568 (2020), 1353585
T. Yamashita, T. Takenaka, Y. Tokiwa, J. A. Wilcox, Yu. Mizukami, D. Terazawa, Yu. Kasahara, Sh. Kittaka, T. Sakakibara, M. Konczykowski, S. Seiro, H. S. Jeevan, Ch. Geibel, C. Putzke, T. Onishi, H. Ikeda, A. Carrington, T. Shibauchi, Yu. Matsuda, Sci. Adv., 3:6 (2017), e1601667
Uzunok H.Y., Tutuncu H.M., Ozer S., Ugur S., Srivastava G.P., Solid State Commun., 206 (2015), 1–5
H. M. Tütüncü, H. Y. Uzunok, Ertuǧrul Karaca, G. P. Srivastava, S. Özer, Ṣ. Uǧur, Phys. Rev. B, 92:5 (2015)