Loading [MathJax]/jax/output/SVG/config.js
Journal of Computational and Engineering Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Comp. Eng. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Computational and Engineering Mathematics, 2021, Volume 8, Issue 1, Pages 60–67
DOI: https://doi.org/10.14529/jcem210105
(Mi jcem186)
 

This article is cited in 7 scientific papers (total in 7 papers)

Short Notes

Exponential dichotomies of a stochastic non-classical equation on a two-dimensional sphere

O. G. Kitaeva

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (201 kB) Citations (7)
Abstract: The article discusses a stochastic analogue of the linear Oskolkov equation, which is obtained from the Oskolkov system of equations. The existence of a solution to the Oskolkov stochastic equation in spaces of differential forms defined on a two-dimensional sphere. For some values of the parameters characterizing the properties of the liquid, the existence of exponential dichotomies of solutions is proved. To solve the question of the existence and stability of solutions, this equation is considered as a special case of a linear stochastic Sobolev type equation. The Nelson - Glicklikh derivative of the stochastic process is considered as a derivative. To visualize the results obtained, an algorithm was developed for calculating stable and unstable solutions of the Oskolkov stochastic equation in spaces of 0-forms on a two-dimensional sphere. This algorithm is implemented in the Maple environment. Graphs of solutions with exponential dichotomy are plotted in a spherical coordinate system.
Keywords: Sobolev type equation, stochastic equations, differential forms, exponential dichotomies.
Received: 25.02.2021
Document Type: Article
UDC: 517.9
Language: English
Citation: O. G. Kitaeva, “Exponential dichotomies of a stochastic non-classical equation on a two-dimensional sphere”, J. Comp. Eng. Math., 8:1 (2021), 60–67
Citation in format AMSBIB
\Bibitem{Kit21}
\by O.~G.~Kitaeva
\paper Exponential dichotomies of a stochastic non-classical equation on a two-dimensional sphere
\jour J. Comp. Eng. Math.
\yr 2021
\vol 8
\issue 1
\pages 60--67
\mathnet{http://mi.mathnet.ru/jcem186}
\crossref{https://doi.org/10.14529/jcem210105}
Linking options:
  • https://www.mathnet.ru/eng/jcem186
  • https://www.mathnet.ru/eng/jcem/v8/i1/p60
  • This publication is cited in the following 7 articles:
    1. Khitam Alzamili, Elina Shishkina, “ON A SINGULAR HEAT EQUATION AND PARABOLIC BESSEL POTENTIAL”, J Math Sci, 2024  crossref
    2. O. G. Kitaeva, “Stability of solutions to the stochastic Oskolkov equation and stabilization”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 17:1 (2024), 17–26  mathnet  crossref
    3. “Stabilization of the Stochastic Barenblatt - Zheltov - Kochina Equation”, JCEM, 10:1 (2023)  crossref
    4. O. G. Kitaeva, “Invariant manifolds of semilinear Sobolev type equations”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:1 (2022), 101–111  mathnet  crossref
    5. D. E. Shafranov, “Sobolev type equations in spaces of differential forms on Riemannian manifolds without boundary”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:1 (2022), 112–122  mathnet  crossref
    6. O. G. Kitaeva, “Eksponentsialnye dikhotomii stokhasticheskikh uravnenii sobolevskogo tipa”, J. Comp. Eng. Math., 9:3 (2022), 3–19  mathnet  crossref
    7. O. G. Kitaeva, “Invariant manifolds of the Hoff model in “noise” spaces”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 14:4 (2021), 24–35  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Journal of Computational and Engineering Mathematics
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :43
    References:1
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025