Processing math: 100%
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 5, Pages 26–32
DOI: https://doi.org/10.26907/0021-3446-2022-5-26-32
(Mi ivm9772)
 

Meyer points and refined Meyer points for arbitrary harmonic functions

S. L. Berberyan

Russian-Armenian (Slavonic) University, 123 Ovsep Emin str., Yerevan, 0051, Republic of Armenia
References:
Abstract: In this paper we study the Meyer points and the refined Meyer points for arbitrary harmonic functions defined in the unit circle. We also consider the representation of points of the set M(f).
Keywords: harmonic functions, Meyer points, refined Meyer points, P-sequence, normal chord.
Received: 28.07.2021
Revised: 17.08.2021
Accepted: 23.12.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 5, Pages 21–25
DOI: https://doi.org/10.3103/S1066369X22050024
Document Type: Article
UDC: 517.538
Language: Russian
Citation: S. L. Berberyan, “Meyer points and refined Meyer points for arbitrary harmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 5, 26–32; Russian Math. (Iz. VUZ), 66:5 (2022), 21–25
Citation in format AMSBIB
\Bibitem{Ber22}
\by S.~L.~Berberyan
\paper Meyer points and refined Meyer points for arbitrary harmonic functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 5
\pages 26--32
\mathnet{http://mi.mathnet.ru/ivm9772}
\crossref{https://doi.org/10.26907/0021-3446-2022-5-26-32}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 5
\pages 21--25
\crossref{https://doi.org/10.3103/S1066369X22050024}
Linking options:
  • https://www.mathnet.ru/eng/ivm9772
  • https://www.mathnet.ru/eng/ivm/y2022/i5/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :80
    References:52
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025