Abstract:
In this paper, for a degenerate higher-order equation with a fractional derivative in the sense of Caputo, a nonlocal problem with conjugation conditions in a rectangular domain is studied. The solution is constructed in the form of a Fourier series in the eigenfunctions of a one-dimensional problem. A criterion for the uniqueness of a solution is given.
Keywords:
even order equation, fractional Caputo derivative, degeneration, conjugation conditions, eigenvalue, eigenfunction, Fourier series, convergence.
Citation:
B. Yu. Irgashev, “A boundary value problem with conjugation conditions for a degenerate the equations with the Caputo fractional derivative”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 4, 27–36; Russian Math. (Iz. VUZ), 66:4 (2022), 24–31
\Bibitem{Irg22}
\by B.~Yu.~Irgashev
\paper A boundary value problem with conjugation conditions for a degenerate the equations with the Caputo fractional derivative
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 4
\pages 27--36
\mathnet{http://mi.mathnet.ru/ivm9766}
\crossref{https://doi.org/10.26907/0021-3446-2022-4-27-36}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 4
\pages 24--31
\crossref{https://doi.org/10.3103/S1066369X2204003X}
Linking options:
https://www.mathnet.ru/eng/ivm9766
https://www.mathnet.ru/eng/ivm/y2022/i4/p27
This publication is cited in the following 3 articles:
A. K. Urinov, D. A. Usmonov, “Ob odnoi zadache dlya uravneniya smeshannogo tipa chetvertogo poryadka, vyrozhdayuschegosya vnutri i na granitse oblasti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:2 (2023), 312–328
A. K. Urinov, D. D. Oripov, “O razreshimosti odnoi nachalno-granichnoi zadachi dlya vyrozhdayuschegosya uravneniya vysokogo chetnogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 27:4 (2023), 621–644
B.Yu. Irgashev, “Initial boundary value problem for a high-order equation with two lines of degeneracy with the Caputo derivative”, Chaos, Solitons & Fractals, 176 (2023), 114119