Abstract:
In the present work we consider the problems of correctness of a linear inverse problem for the multidimensional equation of the mixed type of the first kind and of the second order. For this problem, the theorems on existence and uniqueness of the solution are proved in a certain class by "ε-regularization", a priori estimations and of successive approximations methods.
Keywords:
multidimensional equation of mixed type of first kind, second order, linear inverse problem, correctness of solution, "ε-regularization", a priori estimation successive approximation method.
Citation:
S. Z. Djamalov, R. R. Ashurov, “On one linear inverse problem for multidimensional equation of the mixed type of the first kind and of the second order”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 6, 11–22; Russian Math. (Iz. VUZ), 63:6 (2019), 8–18
\Bibitem{DjaAsh19}
\by S.~Z.~Djamalov, R.~R.~Ashurov
\paper On one linear inverse problem for multidimensional equation of the mixed type of the first kind and of the second order
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 6
\pages 11--22
\mathnet{http://mi.mathnet.ru/ivm9469}
\crossref{https://doi.org/10.26907/0021-3446-2019-6-11-22}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 6
\pages 8--18
\crossref{https://doi.org/10.3103/S1066369X19060021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000480734600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070669287}
Linking options:
https://www.mathnet.ru/eng/ivm9469
https://www.mathnet.ru/eng/ivm/y2019/i6/p11
This publication is cited in the following 12 articles:
S. Z. Djamalov, B. K. Sipatdinova, “A linear inverse problem for a three-dimensional mixed-type equation of the second kind, second order with semi-nonlocal boundary condition in an unbounded parallelepiped”, Chelyab. fiz.-matem. zhurn., 9:3 (2024), 471–482
R. R. Ashurov, M. B. Murzambetova, “Inverse Problem for Mixed-type Equation with an Elliptic Operator of Arbitrary Order”, Lobachevskii J Math, 44:2 (2023), 533
O. Kh. Abdullaev, T. K. Yuldashev, “Inverse Problems for the Loaded Parabolic-Hyperbolic Equation Involves Riemann–Liouville Operator”, Lobachevskii J Math, 44:3 (2023), 1080
A. K. Fayziyev, A. N. Abdullozhonova, T. K. Yuldashev, “Inverse Problem for Whitham Type Multi-Dimensional Differential Equation with Impulse Effects”, Lobachevskii J Math, 44:2 (2023), 570
Sirojiddin Z. Dzhamalov, Ravshan Ashurov, Alexandr Kozhanov, “Linear Inverse Problem for 3-Dimensional Chaplygin Equation with Semi–Nonlocal Boundary Conditions in a Prismatic Unbounded Domain”, J Math Sci, 274:2 (2023), 186
R. R. Ashurov, M. B. Murzambetova, “Kraevaya zadacha dlya uravneniya smeshannogo tipa s ellipticheskim operatorom vysokogo poryadka”, Vestnik KRAUNTs. Fiz.-mat. nauki, 39:2 (2022), 7–19
T. K. Yuldashev, O. Sh. Kilichev, “Nonlinear Inverse Problem for a Sixth Order Differential Equation with Two Redefinition Functions”, Lobachevskii J Math, 43:3 (2022), 804
T. K. Yuldashev, A. K. Fayziyev, “Integral Condition with Nonlinear Kernel for an Impulsive System of Differential Equations with Maxima and Redefinition Vector”, Lobachevskii J Math, 43:8 (2022), 2332
R. R. Ashurov, R. T. Zunnunov, “Inverse problem for determining the order of the fractional derivative in mixed-type equations”, Lobachevskii J. Math., 42:12 (2021), 2714–2729
S. Z. Dzhamalov, R. R. Ashurov, U. Sh. Ruziev, “On a seminonlocal boundary value problem for a multidimensional loaded mixed type equation of the second kind”, Lobachevskii J. Math., 42:3, SI (2021), 536–543
S. Z. Dzhamalov, R. R. Ashurov, Kh. Sh. Turakulov, “The Linear Inverse Problem for the Three-Dimensional Tricomi Equation in a Prismatic Unbounded Domain”, Lobachevskii J Math, 42:15 (2021), 3606
S. Z. Dzhamalov, S. R. Umarov, R. R. Ashurov, “On unique solvability of a nonlocal boundary-value problem for a loaded multidimensional Chaplygin's equation in the Sobolev space”, Lobachevskii J. Math., 41:1, SI (2020), 7–14