Abstract:
In the space Lp(Rn), 1<p<∞, we study a new wide class of integral operators with anisotropically homogeneous kernels. We obtain sufficient conditions for the boundedness of operators from this class. We consider the Banach algebra generated by operators with anisotropically homogeneous kernels of compact type and multiplicatively slowly oscillating coefficients. We establish a relationship between this algebra and multidimensional convolution operators, and construct a symbolic calculus for it. We also obtain necessary and sufficient conditions for the Fredholm property of operators from this algebra.
Keywords:
integral operators, homogeneous kernels, convolution operators, boundedness, fredholmness.
Citation:
V. M. Deundyak, E. I. Miroshnikova, “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 7, 3–17; Russian Math. (Iz. VUZ), 56:7 (2012), 1–14
\Bibitem{DeuMir12}
\by V.~M.~Deundyak, E.~I.~Miroshnikova
\paper The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 7
\pages 3--17
\mathnet{http://mi.mathnet.ru/ivm8715}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3077457}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 7
\pages 1--14
\crossref{https://doi.org/10.3103/S1066369X12070018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866271321}
Linking options:
https://www.mathnet.ru/eng/ivm8715
https://www.mathnet.ru/eng/ivm/y2012/i7/p3
This publication is cited in the following 5 articles:
V. V. Denisenko, V. M. Deundyak, “Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the L2 Space on the Heisenberg Group”, Proc. Steklov Inst. Math., 308 (2020), 155–167
V. M. Deundyak, A. V. Lukin, “Proektsionnyi metod resheniya uravnenii dlya mnogomernykh operatorov s anizotropno odnorodnymi yadrami kompaktnogo tipa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:2 (2019), 153–165
V. V. Denisenko, V. M. Deundyak, “Obratimost integralnykh operatorov s odnorodnymi yadrami kompaktnogo tipa na gruppe Geizenberga”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:3 (2018), 5–18
A. V. Lukin, “Primenenie lokalnogo podkhoda Simonenko–Kozaka v teorii proektsionnykh metodov resheniya uravnenii svertki s operatornymi koeffitsientami”, Vladikavk. matem. zhurn., 18:2 (2016), 55–66
Elena M., “Boundedness and Invertibility of Multidimensional Integral Operators With Anisotropically Homogeneous Kernels in Weighted l-P-Spaces”, 10Th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences (Icnpaa 2014), AIP Conference Proceedings, 1637, ed. Sivasundaram S., Amer Inst Physics, 2014, 663–672