Abstract:
In this paper we consider the system of discrete functions $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty,$ which is orthonormal with respect to the Sobolev-type inner product
\begin{equation*}
\langle f,g \rangle=\sum_{\nu=0}^{r-1}\Delta^{\nu} f(-r)\Delta^{\nu} g(-r) + \sum_{t\in\Omega_r}\Delta^r f(t) \Delta^r g(t)\mu(t),
\end{equation*}
where $\mu(t)=q^t(1-q)$, $0<q<1.$ It is shown that the shifted
classical Meixner polynomials
$\left\{M_k^{-r}(x+r)\right\}_{k=r}^\infty$ together with
functions $\left\{{(x+r)^{[k]}\over k!}\right\}_{k=0}^{r-1}$ form
a complete orthogonal system in the space $l_{2,\mu}(\Omega_r)$
with respect to the Sobolev-type inner product. It is shown that
the Fourier series on Meixner polynomials
$\left\{a_kM_k^{-r}(x+r)\right\}_{k=r}^\infty$ ($a_k$ —
normalizing factors), orthonormal in terms of Sobolev, is a
special case of mixed series on Meixner polynomials. Some new
special series on Meixner orthogonal polynomials $M_k^\alpha(x)$
with $\alpha>-1$ are considered. In the case when $\alpha=r$ these
special series coincide with mixed series on Meixner polynomials
$M_k^0(x)$ and Fourier series on the system
$\left\{a_kM_k^{-r}(x+r)\right\}_{k=r}^\infty$ orthonormal with
respect to the Sobolev-type inner product.
Citation:
R. M. Gadzhimirzaev, “The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product”, Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016), 388–395
\Bibitem{Gad16}
\by R.~M.~Gadzhimirzaev
\paper The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 4
\pages 388--395
\mathnet{http://mi.mathnet.ru/isu687}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-4-388-395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3584323}
\elib{https://elibrary.ru/item.asp?id=27675051}
Linking options:
https://www.mathnet.ru/eng/isu687
https://www.mathnet.ru/eng/isu/v16/i4/p388
This publication is cited in the following 6 articles:
M. G. Magomed-Kasumov, “Otsenki skorosti skhodimosti ryadov Fure po ortogonalnoi v smysle Soboleva sisteme funktsii, porozhdennoi sistemoi Uolsha”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 200, VINITI RAN, M., 2021, 73–80
R. M. Gadzhimirzaev, “Approximation of Discrete Functions Using Special Series By Modified Meixner Polynomials”, Sib. Electron. Math. Rep., 17 (2020), 395–405
M. G. Magomed-Kasumov, “A Sobolev Orthogonal System of Functions Generated by a Walsh System”, Math. Notes, 105:4 (2019), 543–549
R. M. Gadzhimirzaev, “Rekurrentnye sootnosheniya dlya polinomov, ortonormirovannykh po Sobolevu, porozhdennykh polinomami Lagerra”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 18:1 (2018), 17–24
R. M. Gadzhimirzaev, “Approksimativnye svoistva spetsialnykh ryadov po polinomam Meiksnera”, Vladikavk. matem. zhurn., 20:3 (2018), 21–36
I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Sistemy funktsii, ortogonalnykh otnositelno skalyarnykh proizvedenii tipa Soboleva s diskretnymi massami, porozhdennykh klassicheskimi ortogonalnymi sistemami”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 31–60