Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 3, Pages 310–321
DOI: https://doi.org/10.18500/1816-9791-2016-16-3-310-321
(Mi isu650)
 

This article is cited in 14 scientific papers (total in 14 papers)

Mathematics

Sobolev orthogonal polynomials generated by Meixner polynomials

I. I. Sharapudinovabc, Z. D. Gadzhievaab

a Dagestan Scientific Center RAS
b Dagestan State Pedagogical University, 45, M.Gadzhieva st., 367032, Makhachkala, Russia
c Vladikavkaz Scientific Center RAS
References:
Abstract: The problem of constructing Sobolev orthogonal polynomials mαr,n(x,q) (n=0,1,), generated by classical Meixner's polynomials is considered. They can by defined using the following equalities mαr,k(x,q)=x[k]k!, x[k]=x(x1)(xk+1), k=0,1,,r1, mαr,k+r(x,q)=1(r1)!xrt=0(x1t)[r1]mαk(t,q), where mαk(t,q) denote Meixner's polynomial of degree k, orthonormal on Ω={0,1,} with weight ρ(x)=qxΓ(x+α+1)Γ(x+1)(1q)α+1. Polynomials mαr,n(x,q), (n=0,1,) are orthonormal on Ω={0,1,} with respect to the inner product
mαr,n,mαr,m=r1k=0Δkmαr,n(0,q)Δkmαr,m(0,q)+j=0Δrmαr,n(j,q)Δrmαr,m(j,q)ρ(j).
For mαr,n(x,q) we obtain the explicit formula that contains the Мeixner polynomial Mαrn(x,q):
mαr,k+r(x,q)=(qq1)r{hαk(q)}1/2[Mαrk+r(x,q)r1ν=0Ar,k,νx[ν]ν!],k=0,1,,
where Ar,k,ν=(q1q)νΓ(k+α+1)(k+rν)!Γ(νr+α+1), Mαn(x,q)=Γ(n+α+1)n!nk=0n[k]x[k]Γ(k+α+1)k!(11q)k, hαn(q)=(n+αn)qnΓ(α+1).
Key words: orthogonal Sobolev polynomial, Meixner polynomials orthogonal on the grid, approximation of discrete functions, mixed series in Meixner polinomials orthogonal on a uniform grid.
Bibliographic databases:
Document Type: Article
UDC: 517.587
Language: Russian
Citation: I. I. Sharapudinov, Z. D. Gadzhieva, “Sobolev orthogonal polynomials generated by Meixner polynomials”, Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 310–321
Citation in format AMSBIB
\Bibitem{ShaGad16}
\by I.~I.~Sharapudinov, Z.~D.~Gadzhieva
\paper Sobolev orthogonal polynomials generated by Meixner polynomials
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 3
\pages 310--321
\mathnet{http://mi.mathnet.ru/isu650}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-3-310-321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3557759}
\elib{https://elibrary.ru/item.asp?id=26702021}
Linking options:
  • https://www.mathnet.ru/eng/isu650
  • https://www.mathnet.ru/eng/isu/v16/i3/p310
  • This publication is cited in the following 14 articles:
    1. R. M. Gadzhimirzaev, “Convergence of the Fourier Series in Meixner–Sobolev Polynomials and Approximation Properties of Its Partial Sums”, Math. Notes, 115:3 (2024), 301–316  mathnet  crossref  crossref  mathscinet
    2. R. M. Gadzhimirzaev, “Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials”, Sb. Math., 215:9 (2024), 1202–1223  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. Galina Filipuk, Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, “Second-order difference equation for Sobolev-type orthogonal polynomials: Part I: theoretical results”, Journal of Difference Equations and Applications, 28:7 (2022), 971  crossref
    4. M. G. Magomed-Kasumov, “Otsenki skorosti skhodimosti ryadov Fure po ortogonalnoi v smysle Soboleva sisteme funktsii, porozhdennoi sistemoi Uolsha”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 200, VINITI RAN, M., 2021, 73–80  mathnet  crossref
    5. M. S. Sultanakhmedov, R. M. Gadzhimirzaev, “O predstavlenii resheniya zadachi Koshi dlya raznostnogo uravneniya ryadom Fure po polinomam Meiksnera – Soboleva”, Dagestanskie elektronnye matematicheskie izvestiya, 2021, no. 16, 74–82  mathnet  crossref
    6. M. G. Magomed-Kasumov, “A Sobolev Orthogonal System of Functions Generated by a Walsh System”, Math. Notes, 105:4 (2019), 543–549  mathnet  crossref  crossref  mathscinet  isi  elib
    7. I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. T. N. Shakh-Emirov, “O ravnomernoi skhodimosti ryadov Fure–Soboleva”, Dagestanskie elektronnye matematicheskie izvestiya, 2019, no. 12, 55–61  mathnet  crossref
    9. I. I. Sharapudinov, I. G. Guseinov, “Polinomy, ortogonalnye po Sobolevu, porozhdennye polinomami Sharle”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 18:2 (2018), 196–205  mathnet  crossref  elib
    10. M. G. Magomed-Kasumov, S. R. Magomedov, “Bystroe vychislenie lineinykh kombinatsii sobolevskikh funktsii, porozhdennykh funktsiyami Khaara”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 9, 7–14  mathnet  crossref
    11. M. G. Magomed-Kasumov, S. R. Magomedov, “Spektralnyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii posredstvom ortogonalnoi v smysle Soboleva sistemy funktsii, porozhdennoi sistemoi Khaara”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 10, 50–60  mathnet  crossref
    12. I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 29–39  mathnet  crossref
    13. I. I. Sharapudinov, M. G. Magomed-Kasumov, “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60  mathnet  crossref
    14. I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Sistemy funktsii, ortogonalnykh otnositelno skalyarnykh proizvedenii tipa Soboleva s diskretnymi massami, porozhdennykh klassicheskimi ortogonalnymi sistemami”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 31–60  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:468
    Full-text PDF :157
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025