Abstract:
The problem of constructing Sobolev orthogonal
polynomials mαr,n(x,q)(n=0,1,…), generated
by classical Meixner's polynomials is considered. They can by
defined using the following equalities
mαr,k(x,q)=x[k]k!,
x[k]=x(x−1)⋯(x−k+1), k=0,1,…,r−1,
mαr,k+r(x,q)=1(r−1)!x−r∑t=0(x−1−t)[r−1]mαk(t,q),
where mαk(t,q) denote Meixner's polynomial of degree
k, orthonormal on Ω={0,1,…} with weight
ρ(x)=qxΓ(x+α+1)Γ(x+1)(1−q)α+1.
Polynomials mαr,n(x,q), (n=0,1,…) are
orthonormal on Ω={0,1,…} with respect to the inner
product
⟨mαr,n,mαr,m⟩=r−1∑k=0Δkmαr,n(0,q)Δkmαr,m(0,q)+∞∑j=0Δrmαr,n(j,q)Δrmαr,m(j,q)ρ(j).
For mαr,n(x,q) we obtain the explicit formula that
contains the Мeixner polynomial
Mα−rn(x,q):
mαr,k+r(x,q)=(qq−1)r{hαk(q)}−1/2[Mα−rk+r(x,q)−r−1∑ν=0Ar,k,νx[ν]ν!],k=0,1,…,
where Ar,k,ν=(q−1q)νΓ(k+α+1)(k+r−ν)!Γ(ν−r+α+1), Mαn(x,q)=Γ(n+α+1)n!∑nk=0n[k]x[k]Γ(k+α+1)k!(1−1q)k, hαn(q)=(n+αn)q−nΓ(α+1).
Key words:
orthogonal Sobolev polynomial, Meixner polynomials orthogonal on the grid, approximation of discrete functions, mixed series in Meixner polinomials orthogonal on a uniform grid.
Bibliographic databases:
Document Type:
Article
UDC:517.587
Language: Russian
Citation:
I. I. Sharapudinov, Z. D. Gadzhieva, “Sobolev orthogonal polynomials generated by Meixner polynomials”, Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 310–321
This publication is cited in the following 14 articles:
R. M. Gadzhimirzaev, “Convergence of the Fourier Series in Meixner–Sobolev
Polynomials and Approximation Properties of Its Partial Sums”, Math. Notes, 115:3 (2024), 301–316
R. M. Gadzhimirzaev, “Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials”, Sb. Math., 215:9 (2024), 1202–1223
Galina Filipuk, Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, “Second-order difference equation for Sobolev-type orthogonal polynomials: Part I: theoretical results”, Journal of Difference Equations and Applications, 28:7 (2022), 971
M. G. Magomed-Kasumov, “Otsenki skorosti skhodimosti ryadov Fure po ortogonalnoi v smysle Soboleva sisteme funktsii, porozhdennoi sistemoi Uolsha”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 200, VINITI RAN, M., 2021, 73–80
M. S. Sultanakhmedov, R. M. Gadzhimirzaev, “O predstavlenii resheniya zadachi Koshi dlya raznostnogo uravneniya ryadom Fure po polinomam Meiksnera – Soboleva”, Dagestanskie elektronnye matematicheskie izvestiya, 2021, no. 16, 74–82
M. G. Magomed-Kasumov, “A Sobolev Orthogonal System of Functions Generated by a Walsh System”, Math. Notes, 105:4 (2019), 543–549
I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733
T. N. Shakh-Emirov, “O ravnomernoi skhodimosti ryadov Fure–Soboleva”, Dagestanskie elektronnye matematicheskie izvestiya, 2019, no. 12, 55–61
I. I. Sharapudinov, I. G. Guseinov, “Polinomy, ortogonalnye po Sobolevu, porozhdennye polinomami Sharle”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 18:2 (2018), 196–205
M. G. Magomed-Kasumov, S. R. Magomedov, “Bystroe vychislenie lineinykh kombinatsii sobolevskikh funktsii, porozhdennykh funktsiyami Khaara”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 9, 7–14
M. G. Magomed-Kasumov, S. R. Magomedov, “Spektralnyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii posredstvom ortogonalnoi v smysle Soboleva sistemy funktsii, porozhdennoi sistemoi Khaara”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 10, 50–60
I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 29–39
I. I. Sharapudinov, M. G. Magomed-Kasumov, “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60
I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Sistemy funktsii, ortogonalnykh otnositelno skalyarnykh proizvedenii tipa Soboleva s diskretnymi massami, porozhdennykh klassicheskimi ortogonalnymi sistemami”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 31–60