Abstract:
We introduce the isoperimetry coefficient σ(G)=|∂G|n/(n−1)/|G|σ(G)=|∂G|n/(n−1)/|G| of region G⊂Rn. In terms of this the error δΔ(f) estimates for the gradient of the piecewise linear interpolation of functions of class C1(G), C2(G), C1,α(G), 0<α<1, are obtained. The problem of obtaining such estimates is nontrivial, especially in the multidimensional case. Here it should be noted that in the two-dimensional case, for functions of class C2(G), the convergence of the derivatives is provided by the classical Delaunay condition. In the multidimensional case, as shown by the examples, such conditions are not sufficient. Nevertheless, the article shows how to apply these estimates to the Delaunay triangulation of multidimensional discrete ε-nets. The results obtained give sufficient conditions for convergence of the derivatives on the Delaunay triangulation of discrete ε-nets with ε→0. In addition, the ratio of the distortion factor is found for isoperimetry coefficient under the quasi-isometric transformation.
Key words:
isoperimetry coefficient, simplex, piecewise linear interpolation.
Bibliographic databases:
Document Type:
Article
UDC:514.174.3+519.65
Language: Russian
Citation:
V. A. Klyachin, D. V. Shurkaeva, “Isoperimetry coefficient for simplex in the problem of approximation of derivatives”, Izv. Saratov Univ. Math. Mech. Inform., 15:2 (2015), 151–160
\Bibitem{KlyShu15}
\by V.~A.~Klyachin, D.~V.~Shurkaeva
\paper Isoperimetry coefficient for simplex in the problem of approximation of~derivatives
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2015
\vol 15
\issue 2
\pages 151--160
\mathnet{http://mi.mathnet.ru/isu576}
\crossref{https://doi.org/10.18500/1816-9791-2015-15-2-151-160}
\elib{https://elibrary.ru/item.asp?id=23647131}
Linking options:
https://www.mathnet.ru/eng/isu576
https://www.mathnet.ru/eng/isu/v15/i2/p151
This publication is cited in the following 5 articles:
D. V. Shurkaeva, “Distortion of the triangle isoperimetricity coefficient under quasiconformal mapping”, Mathematical Physics and Computer Simulation, 23:1 (2020), 22–31
A. A. Klyachin, “Otsenka pogreshnosti vychisleniya funktsionala, soderzhaschego proizvodnye vtorogo poryadka, na treugolnoi setke”, Sib. elektron. matem. izv., 16 (2019), 1856–1867
R. Sh. Khasyanov, “Ermitova interpolyatsiya na simplekse”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 18:3 (2018), 316–327
A. A. Klyachin, “Postroenie treugolnoi setki dlya oblastei, ogranichennykh zamknutymi prostymi krivymi”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:3 (2018), 31–38