Abstract:
The direct approximation theorem by algebraic polynomials is proved for Riemann–Liouville integrals of order r>0. As a corollary, we obtain asymptotic equalities for ε-entropy of the image of a Hölder type class under Riemann–Liouville integration operator.
Citation:
A. A. Tyleneva, “Approximation of the Riemann–Liouville Integrals by Algebraic Polynomials on the Segment”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 305–311
\Bibitem{Tyu14}
\by A.~A.~Tyleneva
\paper Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 3
\pages 305--311
\mathnet{http://mi.mathnet.ru/isu514}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-3-305-311}
\elib{https://elibrary.ru/item.asp?id=21967151}
Linking options:
https://www.mathnet.ru/eng/isu514
https://www.mathnet.ru/eng/isu/v14/i3/p305
This publication is cited in the following 2 articles:
P. G. Potseiko, Y. A. Rovba, “Approximation of Riemann–Liouville type integrals on an interval by methods based on Fourier–Chebyshev sums”, Math. Notes, 116:1 (2024), 104–118
P. G. Potseiko, E. A. Rovba, “Ob approksimatsiyakh integrala Rimana–Liuvillya na otrezke ratsionalnymi integralnymi operatorami Fure–Chebysheva”, Trudy Instituta matematiki NAN Belarusi, 32:1 (2024), 38–56