Meždunarodnyj naučno-issledovatel'skij žurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Meždunar. nauč.-issled. žurn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Meždunarodnyj naučno-issledovatel'skij žurnal, 2022, , Issue 1(115), Pages 13–23
DOI: https://doi.org/10.23670/IRJ.2022.115.1.002
(Mi irj634)
 

PHYSICS AND MATHEMATICS

Solution to the problem of creep of curvilinear-anisotropic media by the Runge-Kutta-Fehlberg method of 5-6 order

Yu. I. Dimitrienko, Yu. V. Yurin, T. R. Gumirgaliev, G. A. Krasnov

Bauman Moscow State Technical University
References:
Abstract: The article proposes a method for preliminary analysis of the composition and assessment of the dynamics of layers of deep-lying rock formations, physical knowledge of which is insufficient or cannot be obtained experimentally without the stage of development and launch of wells, mines and quarries. This method is based on modeling the stress-strain state of rocks taking into account block-curved anisotropy and creep. The paper proposes a method for an effective numerical solution of the stress-strain state problem taking into account block-curved anisotropy and creep. The developed software is offered on the basis of the Scientific and Educational Center “Supercomputer engineering modeling and development of software complexes” of the Bauman Moscow State Technical University to create, describe, solve, analyze soil models and other mathematical models.
Keywords: rock, stress-strain state, creep equations, anisotropy, numerical methods, finite element method.
Document Type: Article
Language: Russian
Citation: Yu. I. Dimitrienko, Yu. V. Yurin, T. R. Gumirgaliev, G. A. Krasnov, “Solution to the problem of creep of curvilinear-anisotropic media by the Runge-Kutta-Fehlberg method of 5-6 order”, Meždunar. nauč.-issled. žurn., 2022, no. 1(115), 13–23
Citation in format AMSBIB
\Bibitem{DimYurGum22}
\by Yu.~I.~Dimitrienko, Yu.~V.~Yurin, T.~R.~Gumirgaliev, G.~A.~Krasnov
\paper Solution to the problem of creep of curvilinear-anisotropic media by the Runge-Kutta-Fehlberg method of 5-6 order
\jour Me{\v z}dunar. nau{\v{c}}.-issled. {\v z}urn.
\yr 2022
\issue 1(115)
\pages 13--23
\mathnet{http://mi.mathnet.ru/irj634}
\crossref{https://doi.org/10.23670/IRJ.2022.115.1.002}
Linking options:
  • https://www.mathnet.ru/eng/irj634
  • https://www.mathnet.ru/eng/irj/v115/i1/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Meždunarodnyj naučno-issledovatel'skij žurnal
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :46
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025