Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2024, 074, 12 pp.
DOI: https://doi.org/10.20948/prepr-2024-74
(Mi ipmp3284)
 

Compensation of numerical noise at large time steps using temperature fluctuations in an atomistic spin dynamics

A. V. Ivanov
References:
Abstract: The atomistic model of classical Heisenberg magnetic material is a system of stochastic differential equations of Landau-Lifshitz with a Langevin source. Strong local exchange interaction leads to the appearance of numerical noise, which significantly limits the time step. Numerical noise manifests itself similarly to temperature fluctuations, which makes it possible to try to compensate for the noise by reducing the temperature. The temperature correction is calculated based on the second equation of correlation magnetodynamics. This approach allows increasing the integration step by almost an order of magnitude, while maintaining the error level at an acceptable level.
Keywords: atomistic spin dynamics, corellation magnitodynamics.
Document Type: Preprint
Language: Russian
Citation: A. V. Ivanov, “Compensation of numerical noise at large time steps using temperature fluctuations in an atomistic spin dynamics”, Keldysh Institute preprints, 2024, 074, 12 pp.
Citation in format AMSBIB
\Bibitem{Iva24}
\by A.~V.~Ivanov
\paper Compensation of numerical noise at large time steps using temperature fluctuations in an atomistic spin dynamics
\jour Keldysh Institute preprints
\yr 2024
\papernumber 074
\totalpages 12
\mathnet{http://mi.mathnet.ru/ipmp3284}
\crossref{https://doi.org/10.20948/prepr-2024-74}
Linking options:
  • https://www.mathnet.ru/eng/ipmp3284
  • https://www.mathnet.ru/eng/ipmp/y2024/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
    Statistics & downloads:
    Abstract page:18
    Full-text PDF :1
    References:5
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025