Loading [MathJax]/jax/output/SVG/config.js
Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2019, 008, 26 pp.
DOI: https://doi.org/10.20948/prepr-2019-8
(Mi ipmp2646)
 

This article is cited in 8 scientific papers (total in 8 papers)

A conservative limiting method for bicompact schemes

M. D. Bragin, B. V. Rogov
Full-text PDF (497 kB) Citations (8)
References:
Abstract: In this work, a new limiting method for bicompact schemes is proposed that preserves them conservative. The method is based upon a finite-element treatment of the bicompact approximation. An analogy between Galerkin schemes and bicompact schemes is established. The proposed method is tested on one-dimensional gasdynamics problems that include the Sedov problem, the Riemann “peak” problem, and the Shu–Osher problem. It is shown on these examples that bicompact schemes with conservative limiting are significantly more accurate than hybrid bicompact schemes.
Keywords: bicompact schemes, conservative schemes, monotonicity preserving schemes, hyperbolic equations, discontinuous solutions.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00045_мол_а
Bibliographic databases:
Document Type: Preprint
Language: Russian
Citation: M. D. Bragin, B. V. Rogov, “A conservative limiting method for bicompact schemes”, Keldysh Institute preprints, 2019, 008, 26 pp.
Citation in format AMSBIB
\Bibitem{BraRog19}
\by M.~D.~Bragin, B.~V.~Rogov
\paper A conservative limiting method for bicompact schemes
\jour Keldysh Institute preprints
\yr 2019
\papernumber 008
\totalpages 26
\mathnet{http://mi.mathnet.ru/ipmp2646}
\crossref{https://doi.org/10.20948/prepr-2019-8}
\elib{https://elibrary.ru/item.asp?id=36832823}
Linking options:
  • https://www.mathnet.ru/eng/ipmp2646
  • https://www.mathnet.ru/eng/ipmp/y2019/p8
  • This publication is cited in the following 8 articles:
    1. E. N. Aristova, N. I. Karavaeva, A. A. Gurchenkov, “Osobennosti realizatsii modifitsirovannoi skhemy s ermitovoi interpolyatsiei dlya chislennogo resheniya uravneniya perenosa s peremennym koeffitsientom pogloscheniya”, Preprinty IPM im. M. V. Keldysha, 2024, 018, 19 pp.  mathnet  crossref
    2. E. N. Aristova, N. I. Karavaeva, I. R. Ivashkin, “Monotonizatsiya modifitsirovannoi skhemy s ermitovoi interpolyatsiei dlya chislennogo resheniya neodnorodnogo uravneniya perenosa s pogloscheniem”, Preprinty IPM im. M. V. Keldysha, 2024, 065, 40 pp.  mathnet  crossref
    3. E. N. Aristova, N. I. Karavaeva, “The bicompact schemes for numerical solving of Reed problem using HOLO algorithms”, Math. Models Comput. Simul., 14:2 (2022), 187–202  mathnet  crossref  crossref
    4. M. D. Bragin, B. V. Rogov, “High-order bicompact schemes for numerical modelling of multispecies multi-reaction gas flows”, Math. Models Comput. Simul., 13:1 (2021), 106–115  mathnet  crossref  crossref
    5. E. N. Aristova, N. I. Karavaeva, “Konservativnaya monotonizatsiya varianta CIP skhemy dlya resheniya uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha, 2020, 121, 16 pp.  mathnet  crossref  elib
    6. M. D. Bragin, B. V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves”, Comput. Math. Math. Phys., 60:5 (2020), 864–878  mathnet  crossref  crossref  isi  elib
    7. M. D. Bragin, B. V. Rogov, “Bikompaktnye skhemy dlya mnogomernykh uravnenii giperbolicheskogo tipa na dekartovykh setkakh s adaptatsiei k resheniyu”, Preprinty IPM im. M. V. Keldysha, 2019, 011, 27 pp.  mathnet  crossref  elib
    8. Mikhail Dmitrievich Bragin, Boris Vadimovich Rogov, “Bicompact schemes for multidimensional hyperbolic equations on Cartesian meshes with solution-based AMR”, KIAM Prepr., 2019, no. 11-e, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :68
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025