Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika", 1984, Volume 22, Pages 159–201 (Mi intv60)  

This article is cited in 5 scientific papers (total in 5 papers)

Method of the generating functional

G. I. Nazin
Abstract: This is a survey of the present state of the method of the generating functional which makes it possible to effectively study distributions of point random measures on a complete, separable metric space. The principal attention is devoted to the study of distributions of configurations of infinite systems of statistical physics — Gibbs distributions.
English version:
Journal of Soviet Mathematics, 1985, Volume 31, Issue 2, Pages 2859–2886
DOI: https://doi.org/10.1007/BF02116603
Bibliographic databases:
UDC: 519.248.21
Language: Russian
Citation: G. I. Nazin, “Method of the generating functional”, Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 22, VINITI, Moscow, 1984, 159–201; J. Soviet Math., 31:2 (1985), 2859–2886
Citation in format AMSBIB
\Bibitem{Naz84}
\by G.~I.~Nazin
\paper Method of the generating functional
\serial Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern.
\yr 1984
\vol 22
\pages 159--201
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intv60}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=778386}
\zmath{https://zbmath.org/?q=an:0566.60048|0571.60068}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 31
\issue 2
\pages 2859--2886
\crossref{https://doi.org/10.1007/BF02116603}
Linking options:
  • https://www.mathnet.ru/eng/intv60
  • https://www.mathnet.ru/eng/intv/v22/p159
  • This publication is cited in the following 5 articles:
    1. V. V. Ryazanov, “Obtaining the thermodynamic relations for the Gibbs ensemble using the maximum entropy method”, Theoret. and Math. Phys., 194:3 (2018), 390–403  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Yuri Kondratiev, Yuri Kozitsky, “Evolution of states in a continuum migration model”, Anal.Math.Phys., 8:1 (2018), 93  crossref
    3. Yuri G. Kondratiev, Tobias Kuna, Maria João Oliveira, “Holomorphic Bogoliubov functionals for interacting particle systems in continuum”, Journal of Functional Analysis, 238:2 (2006), 375  crossref
    4. Yu. G. Kondrat'ev, A. M. Chebotarev, “Bernstein theorems and transformations of correlation measures in statistical physics”, Math. Notes, 79:5 (2006), 649–663  mathnet  mathnet  crossref  crossref  isi  scopus
    5. G. I. Nazin, A. V. Tatosov, “Solution of Kirkwood–Salsburg equations for a one-dimensional lattice gas”, Theoret. and Math. Phys., 102:3 (1995), 336–340  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :188
    References:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025