Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 194, Pages 46–54
DOI: https://doi.org/10.36535/0233-6723-2021-194-46-54
(Mi into815)
 

On one mixed problem with involution

D. V. Belova

Voronezh State University
References:
Abstract: In this paper, we examine a mixed problem for an equation with an involutive deviation in the argument and periodic boundary conditions. Using the Fourier method, we obtain a classical solution to the problem with minimal requirements for the initial data of the problem. Also, we used some methods of improving the convergence of the series representing a formal solution.
Keywords: functional differential operator, involution, mixed problem, Fourier method.
Document Type: Article
UDC: 517.95, 517.984
MSC: 35F16, 34K08
Language: Russian
Citation: D. V. Belova, “On one mixed problem with involution”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 194, VINITI, Moscow, 2021, 46–54
Citation in format AMSBIB
\Bibitem{Bel21}
\by D.~V.~Belova
\paper On one mixed problem with involution
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 5
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 194
\pages 46--54
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into815}
\crossref{https://doi.org/10.36535/0233-6723-2021-194-46-54}
Linking options:
  • https://www.mathnet.ru/eng/into815
  • https://www.mathnet.ru/eng/into/v194/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :69
    References:30
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025