Abstract:
In this paper, the existence of a periodic solution to a nonlinear spectral problem of the fourth order with an integral condition is proved.
Keywords:
fourth-order nonlinear problem, integral condition, periodic solution, problem with spectral parameter.
Citation:
I. V. Astashova, D. A. Sokolov, “Periodic solutions of a fourth-order nonlinear spectral problem”, Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192, VINITI, Moscow, 2021, 20–25
\Bibitem{AstSok21}
\by I.~V.~Astashova, D.~A.~Sokolov
\paper Periodic solutions of a fourth-order nonlinear spectral problem
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 192
\pages 20--25
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into777}
\crossref{https://doi.org/10.36535/0233-6723-2021-192-20-25}
\elib{https://elibrary.ru/item.asp?id=46639002}
Linking options:
https://www.mathnet.ru/eng/into777
https://www.mathnet.ru/eng/into/v192/p20
This publication is cited in the following 1 articles:
V.N. Orlov, M.V. Gasanov, “The Influence of a Perturbation of a Moving Singular Point on the Structure of an Analytical Approximate Solution of a Class of Third-Order Nonlinear Differential Equations in a Complex Domain”, HoBMSTU.SNS, 2022, no. 6 (105), 60