Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 179, Pages 88–93
DOI: https://doi.org/10.36535/0233-6723-2020-179-88-93
(Mi into632)
 

Infinite linear independence of values of generalized hypergeometric series with irrational parameters at polyadic points

E. Yu. Yudenkova

Moscow State Pedagogical University
References:
Abstract: The paper is devoted to the proof of infinite linear independence at points that admit high-order approximations by algebraic numbers in non-Archimedean normalized fields.
Keywords: hypergeometric series, irrational parameter.
Document Type: Article
UDC: 511.36
MSC: 33C20
Language: Russian
Citation: E. Yu. Yudenkova, “Infinite linear independence of values of generalized hypergeometric series with irrational parameters at polyadic points”, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 179, VINITI, Moscow, 2020, 88–93
Citation in format AMSBIB
\Bibitem{Yud20}
\by E.~Yu.~Yudenkova
\paper Infinite linear independence of values of generalized hypergeometric series with irrational parameters at polyadic points
\inbook Proceedings of the International Conference "Classical and Modern Geometry"
Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev.
Moscow, April 22-25, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 179
\pages 88--93
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into632}
\crossref{https://doi.org/10.36535/0233-6723-2020-179-88-93}
Linking options:
  • https://www.mathnet.ru/eng/into632
  • https://www.mathnet.ru/eng/into/v179/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :73
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025