Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 179, Pages 34–36
DOI: https://doi.org/10.36535/0233-6723-2020-179-34-36
(Mi into623)
 

On $q$-ary periodic sequences

A. H. Munos Vaskes

Moscow State Pedagogical University
References:
Abstract: We consider the problem of estimating the possible number of periods and the length of the periodic part of an irrational number depending on its measure of irrationality $\beta$. We state that the expansion of the fractional part of an irrational number $\alpha$ cannot start from the nonperiodic part of length $(1-\delta)N$ and end with the periodic part of the length $\delta N$, regardless of the numeral system.
Keywords: measure of irrationality, $q$-ary decomposition.
Document Type: Article
UDC: 511.36
MSC: 11J82
Language: Russian
Citation: A. H. Munos Vaskes, “On $q$-ary periodic sequences”, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 179, VINITI, Moscow, 2020, 34–36
Citation in format AMSBIB
\Bibitem{Mun20}
\by A.~H.~Munos Vaskes
\paper On $q$-ary periodic sequences
\inbook Proceedings of the International Conference "Classical and Modern Geometry"
Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev.
Moscow, April 22-25, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 179
\pages 34--36
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into623}
\crossref{https://doi.org/10.36535/0233-6723-2020-179-34-36}
Linking options:
  • https://www.mathnet.ru/eng/into623
  • https://www.mathnet.ru/eng/into/v179/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :76
    References:29
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025