Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 170, Pages 15–30
DOI: https://doi.org/10.36535/0233-6723-2019-170-15-30
(Mi into521)
 

This article is cited in 3 scientific papers (total in 3 papers)

Description of a class of evolutionary equations in ferrodynamics

Yu. P. Virchenko, A. V. Subbotin

Belgorod State University
Full-text PDF (236 kB) Citations (3)
References:
Abstract: In this paper, we state the problem of constructing evolution equations describing the dynamics of condensed matter with an internal structure. Within the framework of this statement, we describe the class of evolution equations for vector and pseudovector fields on R3 with an infinitesimal shift defined by a second-order, divergent-type differential operator, which is invariant under translations of R3 and time translations and is transformed covariantly under rotations of R3. The case of equations of this class with preserved solenoidality and unimodality of the field is studied separately. A general formula for all operators corresponding to these equations is established.
Keywords: divergent differential operator, pseudovector field, flux density, unimodality, solenoidality, ferrodynamic equation.
Document Type: Article
UDC: 517.957.6
MSC: 35Q60, 35K10
Language: Russian
Citation: Yu. P. Virchenko, A. V. Subbotin, “Description of a class of evolutionary equations in ferrodynamics”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 170, VINITI, Moscow, 2019, 15–30
Citation in format AMSBIB
\Bibitem{VirSub19}
\by Yu.~P.~Virchenko, A.~V.~Subbotin
\paper Description of a class of evolutionary equations in ferrodynamics
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part~1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 170
\pages 15--30
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into521}
\crossref{https://doi.org/10.36535/0233-6723-2019-170-15-30}
Linking options:
  • https://www.mathnet.ru/eng/into521
  • https://www.mathnet.ru/eng/into/v170/p15
  • This publication is cited in the following 3 articles:
    1. Yu. P. Virchenko, A. E. Novoseltseva, “Giperbolichnost klassa kvazilineinykh kovariantnykh uravnenii pervogo poryadka divergentnogo tipa”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 207, VINITI RAN, M., 2022, 16–26  mathnet  crossref
    2. Yu. P. Virchenko, A. E. Novoseltseva, “Giperbolichnost kovariantnykh sistem uravnenii pervogo poryadka dlya vektornogo i skalyarnykh polei”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 209, VINITI RAN, M., 2022, 3–15  mathnet  crossref
    3. Yu. P. Virchenko, A. E. Novoseltseva, “Giperbolicheskie kovariantnye evolyutsionnye uravneniya pervogo poryadka dlya vektornogo polya v R3”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 217, VINITI RAN, M., 2022, 20–28  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:146
    Full-text PDF :92
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025