Abstract:
In this paper, we present new properties of the space L1(M,τ)L1(M,τ) of integrable (with respect to the trace ττ) operators affiliated to a semifinite von Neumann algebra MM. For self-adjoint ττ-measurable operators AA and BB, we find sufficient conditions of the ττ-integrability of the operator λI−ABλI−AB and the real-valuedness of the trace τ(λI−AB)τ(λI−AB), where λ∈R. Under these conditions, [A,B]=AB−BA∈L1(M,τ) and τ([A,B])=0. For τ-measurable operators A and B=B2, we find conditions that are sufficient for the validity of the relation τ([A,B])=0. For an isometry U∈M and a nonnegative τ-measurable operator A, we prove that U−A∈L1(M,τ) if and only if I−A,I−U∈L1(M,τ). For a τ-measurable operator A, we present estimates of the trace of the autocommutator [A∗,A]. Let self-adjoint τ-measurable operators X≥0 and Y are such that [X1/2,YX1/2]∈L1(M,τ). Then τ([X1/2,YX1/2])=it, where t∈R and t=0 for XY∈L1(M,τ).
Keywords:
Hilbert space, linear operator, von Neumann algebra, normal semifinite trace, measurable operator, integrable operator, commutator, autocommutator.
This work was partially supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (project No. 15-41-02433) and by the subsidies of the Ministry of Education and Science of the Russian Federation allocated to the Kazan Federal University (project Nos. 1.1515.2017/4.6 and 1.9773.2017/8.9).
Citation:
A. M. Bikchentaev, “Trace and Commutators of Measurable Operators Affiliated to a von Neumann Algebra”, Quantum probability, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 151, VINITI, Moscow, 2018, 10–20; J. Math. Sci. (N. Y.), 252:1 (2021), 8–19
\Bibitem{Bik18}
\by A.~M.~Bikchentaev
\paper Trace and Commutators of Measurable Operators Affiliated to a von~Neumann Algebra
\inbook Quantum probability
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2018
\vol 151
\pages 10--20
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3903362}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2021
\vol 252
\issue 1
\pages 8--19
\crossref{https://doi.org/10.1007/s10958-020-05137-w}
Linking options:
https://www.mathnet.ru/eng/into336
https://www.mathnet.ru/eng/into/v151/p10
This publication is cited in the following 3 articles:
A. M. Bikchentaev, “Sled i integriruemye kommutatory izmerimykh operatorov, prisoedinennykh k polukonechnoi algebre fon Neimana”, Sib. matem. zhurn., 65:3 (2024), 455–468
A. M. Bikchentaev, “The Trace and Integrable Commutators of the Measurable Operators Affiliated to a Semifinite von Neumann Algebra”, Sib Math J, 65:3 (2024), 522
Airat Bikchentaev, “Commutators in C∗-algebras and traces”, Ann. Funct. Anal., 14:2 (2023)