Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2017, Volume 140, Pages 88–118 (Mi into237)  

This article is cited in 14 scientific papers (total in 14 papers)

Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations

V. Zh. Sakbaev

Moscow Institute of Physics and Technology
Abstract: We study random walks in a Hilbert space H and their applications to representations of solutions to Cauchy problems for differential equations whose initial conditions are numerical functions on the Hilbert space H. Examples of such representations of solutions to various evolution equations in the case of a finite-dimensional space H are given. Measures on a Hilbert space that are invariant with respect to shifts are considered for constructing such representations in infinite-dimensional Hilbert spaces. According to a theorem of A. Weil, there is no Lebesgue measure on an infinite-dimensional Hilbert space. We study a finitely additive analog of the Lebesgue measure, namely, a nonnegative, finitely additive measure λ defined on the minimal ring of subsets of an infinite-dimensional Hilbert space H containing all infinite-dimensional rectangles whose products of sides converge absolutely; this measure is invariant with respect to shifts and rotations in the Hilbert space H. We also consider finitely additive analogs of the Lebesgue measure on the spaces lp, 1p, and introduce the Hilbert space H of complex-valued functions on the Hilbert space H that are square integrable with respect to a shift-invariant measure λ. We also obtain representations of solutions to the Cauchy problem for the diffusion equation in the space H and the Schrödinger equation with the coordinate space H by means of iterations of the mathematical expectations of random shift operators in the Hilbert space H.
Keywords: finitely additive measure, invariant measure on a group, random walk, diffusion equation, Cauchy problem, Chernov theorem.
Funding agency Grant number
Russian Science Foundation 14-11-00687
This work was performed at the Steklov Mathematical Institute of the Russian Academy of Sciences under the support of the Russian Science Foundation (project No. 14-11-00687).
English version:
Journal of Mathematical Sciences, 2019, Volume 241, Issue 4, Pages 469–500
DOI: https://doi.org/10.1007/s10958-019-04438-z
Bibliographic databases:
Document Type: Article
UDC: 517.982, 517.983
MSC: 28C20, 81Q05, 47D08
Language: Russian
Citation: V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 88–118; Journal of Mathematical Sciences, 241:4 (2019), 469–500
Citation in format AMSBIB
\Bibitem{Sak17}
\by V.~Zh.~Sakbaev
\paper Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations
\inbook Differential equations. Mathematical physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2017
\vol 140
\pages 88--118
\publ VINITI
\publaddr M.
\mathnet{http://mi.mathnet.ru/into237}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799898}
\zmath{https://zbmath.org/?q=an:1426.28027}
\transl
\jour Journal of Mathematical Sciences
\yr 2019
\vol 241
\issue 4
\pages 469--500
\crossref{https://doi.org/10.1007/s10958-019-04438-z}
Linking options:
  • https://www.mathnet.ru/eng/into237
  • https://www.mathnet.ru/eng/into/v140/p88
  • This publication is cited in the following 14 articles:
    1. V. M. Busovikov, Yu. N. Orlov, V. Zh. Sakbaev, “Unitary representation of walks along random vector fields and the Kolmogorov–Fokker–Planck equation in a Hilbert space”, Theoret. and Math. Phys., 218:2 (2024), 205–221  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. V. Zh. Sakbaev, “Application of Banach limits to invariant measures of infinite-dimensional Hamiltonian flows”, Ann. Funct. Anal., 15:2 (2024)  crossref
    3. M. G. Shelakov, “Extension of the Generalized Lebesgue–Feynman–Smolyanov Measure on a Hilbert Space”, Russ. J. Math. Phys., 30:1 (2023), 114  crossref
    4. Vsevolod Zh. Sakbaev, “Flows in infinite-dimensional phase space equipped with a finitely-additive invariant measure”, Mathematics, 11:5 (2023), 1161–49  mathnet  crossref
    5. V. A. Glazatov, V. Zh. Sakbaev, “Measures on Hilbert space invariant with respect to Hamiltonian flows”, Ufa Math. J., 14:2 (2022), 3–21  mathnet  crossref
    6. V. M. Busovikov, V. Zh. Sakbaev, “Invariant measures for Hamiltonian flows anddiffusion in infinitely dimensional phase spaces”, Int. J. Mod. Phys. A, 37:20 (2022), 2243018–15  mathnet  crossref
    7. B. O. Volkov, “Modified Lévy Laplacian on manifold and Yang–Mills instantons”, Int. J. Mod. Phys. A, 37:20 (2022), 2243022–15  mathnet  crossref
    8. D. V. Grishin, Ya. Yu. Pavlovskiy, “Representation of solutions of the Cauchy problem for a one dimensional Schrödinger equation with a smooth bounded potential by quasi-Feynman formulae”, Izv. Math., 85:1 (2021), 24–60  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. V. M. Busovikov, D. V. Zavadsky, V. Zh. Sakbaev, “Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform”, Proc. Steklov Inst. Math., 313 (2021), 27–40  mathnet  crossref  crossref  mathscinet  isi  elib
    10. V. M. Busovikov, V. Zh. Sakbaev, “Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups”, Izv. Math., 84:4 (2020), 694–721  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. V. M. Busovikov, V. Zh. Sakbaev, “Shift-Invariant Measures on Hilbert and Related Function Spaces”, J Math Sci, 249:6 (2020), 864  crossref
    12. D. V. Zavadsky, V. Zh. Sakbaev, “Diffusion on a Hilbert Space Equipped with a Shift- and Rotation-Invariant Measure”, Proc. Steklov Inst. Math., 306 (2019), 102–119  mathnet  crossref  crossref  mathscinet  isi  elib
    13. V. Zh. Sakbaev, D. V. Zavadsky, “Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 160, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2018, 384–391  mathnet
    14. V. Zh. Sakbaev, “Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space”, J. Math. Sci. (N. Y.), 252:1 (2021), 72–89  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:569
    Full-text PDF :229
    References:1
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025