Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2025, Volume 240, Pages 19–28
DOI: https://doi.org/10.36535/2782-4438-2025-240-19-28
(Mi into1341)
 

Exact and approximate solutions to the quasilinear parabolic system “predator-prey” with zero fronts

A. L. Kazakovab, L. F. Spevakb

a Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
b Institute of Engineering Science, Urals Branch, Russian Academy of Sciences, Ekaterinburg
References:
Abstract: In this paper, we consider the second-order quasilinear parabolic system known in population biology as the predator-prey model and examine exact and approximate solutions with two zero fronts on which at least one of two unknown functions vanish; both these functions are positive between the fronts. We search for exact solutions in the form of polynomials in powers of the spatial variable with the coefficients depending on time. To construct approximate solutions, we propose a numerical algorithm, which is a combination of the collocation method based on the expansion of the right-hand sides by the radial basis functions and the finite-difference approximation of the derivatives in time. The algorithm is verified by model examples; the results obtained are consistent with the exact solutions found.
Keywords: nonlinear parabolic system, predator-prey system, degeneration, zero front, exact solution, approximate solution, collocation method, radial basis functions, computational experiment
Document Type: Article
UDC: 517.957
MSC: 35К55, 35К65
Language: Russian
Citation: A. L. Kazakov, L. F. Spevak, “Exact and approximate solutions to the quasilinear parabolic system “predator-prey” with zero fronts”, Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 240, VINITI, Moscow, 2025, 19–28
Citation in format AMSBIB
\Bibitem{KazSpe25}
\by A.~L.~Kazakov, L.~F.~Spevak
\paper Exact and approximate solutions to the quasilinear parabolic system ``predator-prey'' with zero fronts
\inbook Proceedings of the 6th International Conference "Dynamic Systems and Computer Science: Theory and Applications" (DYSC 2024). Irkutsk, September 16-20, 2024. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2025
\vol 240
\pages 19--28
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1341}
\crossref{https://doi.org/10.36535/2782-4438-2025-240-19-28}
Linking options:
  • https://www.mathnet.ru/eng/into1341
  • https://www.mathnet.ru/eng/into/v240/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:29
    Full-text PDF :9
    References:7
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025