Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 230, Pages 88–95
DOI: https://doi.org/10.36535/0233-6723-2023-230-88-95
(Mi into1247)
 

Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge

N. P. Lazarev, G. M. Semenova, E. S. Efimova

North-Eastern Federal University named after M. K. Ammosov, Yakutsk
References:
Abstract: In this paper, we consider a nonclassical mathematical model that describes the mechanical point contact of a composite body with an obstacle of special geometry. The nonlinearity of the model is due to inequality-type conditions within the framework of the corresponding variational problem. An optimal control problem is formulated in which the controls are functions of external loads, and the cost functional is specified using a weakly upper semi-continuous functional defined on the Sobolev space. The solvability of the optimal control problem is proved. For the sequence of solutions corresponding to the maximizing sequence, the strong convergence in the corresponding Sobolev space is proved.
Keywords: rigid inclusion, non-penetration condition, variational problem
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-947
The work was carried out with the support of the Ministry of Education and Science of the Russian Federation (project № 075-02-2023-947, agreement dated 02/16/2023).
Document Type: Article
UDC: 51-72, 517.97
MSC: 35A15, 49J40, 74B99
Language: Russian
Citation: N. P. Lazarev, G. M. Semenova, E. S. Efimova, “Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge”, Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230, VINITI, Moscow, 2023, 88–95
Citation in format AMSBIB
\Bibitem{LazSemEfi23}
\by N.~P.~Lazarev, G.~M.~Semenova, E.~S.~Efimova
\paper Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge
\inbook Proceedings of the Voronezh international spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings—XXXIV", Voronezh, May 3-9, 2023, Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 230
\pages 88--95
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1247}
\crossref{https://doi.org/10.36535/0233-6723-2023-230-88-95}
Linking options:
  • https://www.mathnet.ru/eng/into1247
  • https://www.mathnet.ru/eng/into/v230/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:87
    Full-text PDF :41
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025