Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 227, Pages 51–60
DOI: https://doi.org/10.36535/0233-6723-2023-227-51-60
(Mi into1217)
 

Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions

N. P. Lazareva, V. A. Kovtunenkob

a North-Eastern Federal University named after M. K. Ammosov, Yakutsk
b Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: A new nonlinear mathematical model is proposed that describes the equilibrium of a two-dimensional elastic body with two thin rigid inclusions. The problem is formulated as a minimizing problem for the energy functional over a nonconvex set of possible displacements defined in a suitable Sobolev space. The existence of a variational solution to the problem is proved. Optimality conditions and differential relations are obtained that characterize the properties of the solution in the domain and on the inclusion; these conditions are satisfied for sufficiently smooth solutions.
Keywords: crack, rigid inclusion, nonpenetration condition, variational problem
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-881
FSRG-2023-0025
This work was supported by the Ministry of Education and Science of the Russian Federation (project Nos. 075-02-2022-881 and FSRG-2023-0025).
Document Type: Article
UDC: 51-72, 517.97
MSC: 35A15, 74B99
Language: Russian
Citation: N. P. Lazarev, V. A. Kovtunenko, “Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions”, Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227, VINITI, Moscow, 2023, 51–60
Citation in format AMSBIB
\Bibitem{LazKov23}
\by N.~P.~Lazarev, V.~A.~Kovtunenko
\paper Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions
\inbook Proceedings of the Voronezh international winter mathematical school "Modern methods of function theory and related problems", Voronezh, January 27 - February 1, 2023, Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 227
\pages 51--60
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1217}
\crossref{https://doi.org/10.36535/0233-6723-2023-227-51-60}
Linking options:
  • https://www.mathnet.ru/eng/into1217
  • https://www.mathnet.ru/eng/into/v227/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :39
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025