Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 211, Pages 3–13
DOI: https://doi.org/10.36535/0233-6723-2022-211-3-13
(Mi into1021)
 

Boundary-value problem for an integro-differential equation of mixed type

A. T. Assanovaa, E. A. Bakirovaa, A. E. Imanchievba

a Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty
b K. Zhubanov Aktobe Regional State University
References:
Abstract: For a two-point boundary-value problem for a system of integro-differential equations of mixed type, we obtain conditions for unique solvability in terms of the solvability of the Cauchy problem and a hybrid system.
Keywords: two-point boundary-value problem, integro-differential equation of mixed type, degenerate kernel, parametrization method, solvability.
Document Type: Article
UDC: 517.968.74
Language: Russian
Citation: A. T. Assanova, E. A. Bakirova, A. E. Imanchiev, “Boundary-value problem for an integro-differential equation of mixed type”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 211, VINITI, Moscow, 2022, 3–13
Citation in format AMSBIB
\Bibitem{AssBakIma22}
\by A.~T.~Assanova, E.~A.~Bakirova, A.~E.~Imanchiev
\paper Boundary-value problem for an integro-differential equation of mixed type
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 211
\pages 3--13
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1021}
\crossref{https://doi.org/10.36535/0233-6723-2022-211-3-13}
Linking options:
  • https://www.mathnet.ru/eng/into1021
  • https://www.mathnet.ru/eng/into/v211/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :50
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025