Abstract:
A survey is given of the application of Tauberian theory to problems of quantum field theory. In particular, the question of the self-similar asymptotics of the form factors of electron-nucleon scattering and its connection with the singular structure of the commutators of electromagnetic currents in a neighborhood of the light cone is considered in detail.
Citation:
V. S. Vladimirov, B. I. Zav'yalov, “Tauberian theorems in quantum field theory”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 15, VINITI, Moscow, 1980, 95–130; J. Soviet Math., 16:6 (1981), 1487–1509
\Bibitem{VlaZav80}
\by V.~S.~Vladimirov, B.~I.~Zav'yalov
\paper Tauberian theorems in quantum field theory
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat.
\yr 1980
\vol 15
\pages 95--130
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd42}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=578991}
\zmath{https://zbmath.org/?q=an:0459.46048|0434.46053}
\transl
\jour J. Soviet Math.
\yr 1981
\vol 16
\issue 6
\pages 1487--1509
\crossref{https://doi.org/10.1007/BF01091711}
Linking options:
https://www.mathnet.ru/eng/intd42
https://www.mathnet.ru/eng/intd/v15/p95
This publication is cited in the following 10 articles:
Julien Barrat, Bartomeu Fiol, Enrico Marchetto, Alessio Miscioscia, Elli Pomoni, “Conformal line defects at finite temperature”, SciPost Phys., 18:1 (2025)
A. L. Yakymiv, “On a number of components in a random A-mapping”, Theory Probab. Appl., 59:1 (2015), 114–127
A. L. Yakymiv, “On the number of cyclic points of random A-mapping”, Discrete Math. Appl., 23:5-6 (2013), 503–515
A. L. Yakymiv, “On the Number of A-Mappings”, Math. Notes, 86:1 (2009), 132–139
A. L. Yakymiv, “On the distribution of the mth maximal cycle lengths of random A-permutations”, Discrete Math. Appl., 15:5 (2005), 527–546
M. K. Kerimov, “Vasiliĭ Sergeevich Vladimirov (on the occasion of his eightieth birthday)”, Comput. Math. Math. Phys., 43:11 (2003), 1541–1549
Yu. N. Drozhzhinov, B. I. Zavialov, “Wiener-Type Tauberian Theorems for Generalized Functions on the Half-Axis”, Proc. Steklov Inst. Math., 228 (2000), 43–51
B. Stanković, “Abelian and Tauberian theorems for Stieltjes transforms of distributions”, Russian Math. Surveys, 40:4 (1985), 99–113
N. N. Bogolyubov, A. A. Logunov, G. I. Marchuk, “Vasilii Sergeevich Vladimirov (on his sixtieth birthday)”, Russian Math. Surveys, 38:1 (1983), 231–243
A. L. Yakymiv, “Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes”, Math. USSR-Sb., 43:3 (1982), 413–425